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Research Summary

We entrust large parts of our daily lives to computer systems, and these systems require thorough verifica-
tion to ensure their correctness. System vulnerabilities can lead to leakage of confidential information, loss
of money, and (in the case of cyber-physical systems) may even threaten one’s physical safety and secu-
rity. Many such bugs have in fact been found in computing systems in recent years, ranging from security
vulnerabilities (like Meltdown and Spectre [19]) to network errors [28] to concurrency bugs [8].

Some important bugs are due to flaws in system design/specification [8, 11], while others are due to
implementations violating the design specification [28, 26]. Since verification is generally focused late in
development (Figure 1a), bugs tend to get caught late in development as well. Design bugs may necessitate
a redesign, wasting the development time spent creating incorrect implementations. Furthermore, many
bugs only occur in very specific scenarios, making them hard to find. Current verification processes have
proven inadequate for catching these bugs, resulting in the release of flawed hardware and software.

Verification using formal methods provides strong correctness guarantees based on mathematical proofs,
and is adept at catching hard-to-find bugs. Formal verification may use automated [10] or manual ap-
proaches [32], but its use has historically been limited to the relatively few individuals with formal methods
expertise, excluding typical hardware and software engineers.

I am a hardware and software systems researcher whose work lies on the boundary between systems
and formal methods. My work aims to improve the verification of hardware and software using formal
methods, without requiring engineers to have formal methods expertise. 1 propose a philosophy of Pro-
gressive Automated Formal Verification (Figure 1b), i.e. verification throughout the system development
process, from early-stage design through to final implementation. Automating formal verification enables
engineering teams to prove strong correctness properties about their designs and implementations by them-
selves, shifting the verification burden away from the relatively small number of formal methods experts.
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Figure 1: Traditional design flow (a) and a Progressive Automated Formal Verification flow (b).

In my philosophy, formal models of systems are first created and verified during early-stage design, thus
catching design bugs before implementation commences. These models can then evolve to become more
detailed as system design progresses. Once the system is implemented, the implementation is formally
verified against a proven-correct design model to help ensure implementation correctness. Amortizing
verification over the entire design timeline in this manner can reduce verification overhead by finding
bugs earlier. The number of steps in a progressive verification flow may vary depending on the type of
system being built, but the key idea is to conduct verification throughout the design timeline and link the
verification methods at each stage together.

Inspired by this philosophy, my dissertation research has enabled progressive automated formal verifi-
cation across the design timeline for memory consistency model (MCM) properties in parallel systems. My
thesis work also stretches across the hardware/software stack, from high-level programming languages
down to low-level Verilog hardware circuits. In addition to enriching the systems community by enabling
automated formal verification, my work has developed novel formal analysis techniques that benefit the
formal methods community. My research has also had practical impact through the discovery of real-
world bugs in C++ compilers, an open-source processor implementation (Verilog), and in the widely-used
RISC-V instruction set (ISA).

In the future, I will create methodologies, tools, and models for the principled design and verification
of emerging heterogeneous parallel systems. 1 will also make it easier for computer architects to design
and verify hardware by raising the abstraction level of hardware description languages. Finally, I will
develop techniques and tools that enable progressive automated formal verification in other domains, such
as distributed systems and cyber-physical systems. The long-term goal of my research is to make formal
methods a ubiquitous technique for verifying computer systems.
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Figure 2: The hardware/software stack & design timeline, annotated with my MCM verification research.
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Memory consistency models (MCMs) specify the ordering requirements for memory operations used for
synchronization in parallel systems [30], so MCM verification is critical to parallel system correctness.
MCMs are defined at various layers of the hardware/software stack (including high-level languages like
C++ and ISAs like x86 or RISC-V), making MCM verification a full-stack problem. An MCM at a given layer
of the stack (e.g. the ISA) defines the ordering guarantees that must be provided by lower layers of the stack
(the hardware in this example), and consequently the guarantees that can be assumed by higher layers of
the stack (in this example, the high-level language and compiler). If each layer of the stack does not imple-
ment its required orderings, the parallel system will not work correctly. MCM verification of designs and
implementations is known for its difficulty, as MCMs are hard to specify unambiguously and their verifi-
cation requires examination of a vast number of possible scenarios. MCM-related bugs in recent hardware
and software have caused incorrect answers [26], unreliable software [8], and security exploits [17].

My PhD research (Figure 2) developed methodologies and tools for automated formal MCM verifica-
tion at multiple levels of the hardware/software stack and at multiple points in the design timeline. A key
idea in my work is the use of microarchitectural happens-before (1thb) graphs [24] to represent hardware
event orderings and the use of SMT solvers to automatically examine all possible event orderings for a
given scenario. I have developed tools for MCM verification of early-stage designs (PipeProof [2] and CCI-
Check [3]), detailed designs (RealityCheck [1]), and Verilog processor implementations (RTLCheck [4]). The
combination of these tools enables progressive automated formal MCM verification of parallel processors.

I also worked on TriCheck [6], a tool for MCM verification actoss layers that allows computer architects
to check that their hardware designs will be compatible with the MCMs of high-level languages like C++. In
addition, I worked on ILA-MCM, a framework [7] that combines instruction-level abstractions (ILAs) [31]
for processing elements in heterogeneous SoCs with formal hardware ordering specifications [25] to create
rich, detailed models of heterogenous SoCs. All my tools are open-sourced when published so that everyone
may benefit from them. Below I expand on the major components of my dissertation work.

Verifying Early-Stage Designs: A hardware design must respect its ISA-level MCM across all possible pro-
grams (an infinite set) for correctness. However, no prior automated approach could conduct such complete
MCM verification. To fill this gap, I developed PipeProof [2] to check that an axiomatic (i.e. constraint-
based) microarchitectural model refines (i.e. correctly implements) its axiomatic ISA-level MCM speci-
fication for all programs. To cover the infinite search space required, I developed the novel Transitive
Chain (TC) Abstraction to abstract the infinite set of programs into a finite set of cases. I also developed
an algorithm based on CEGAR (counterexample-guided abstraction refinement) [12] to incrementally ex-
plore more cases as needed until the abstraction was strong enough to prove the hardware design correct
(or find a bug). PipeProof was a best paper nominee at the MICRO-51 conference, and was recognized
as an “Honorable Mention” for 2018 by the IEEE Micro Top Picks' selection committee. In addition, to
the knowledge of my co-authors and myself, PipeProof is the first ever automated all-program refinement
checking methodology and tool for pairs of axiomatic models of executions. Thus, PipeProof also enriches

EEE Micro Top Picks uses peer review to select the 10-12 most influential computer architecture papers of the year.
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the formal methods community by contributing new methods for reasoning about axiomatic models.
Shared-memory parallel systems use cache coherence protocols to ensure that all processor caches ob-
serve updates to memory locations. Coherence and MCMs are usually verified independently, preventing
the detection of MCM bugs that arise due to their interaction. To fill this verification gap, I developed
CCICheck [3] (best paper nominee at the MICRO-48 conference), the first methodology and tool capable of
automatically detecting MCM bugs arising from the interaction of processor pipelines with cache coher-
ence protocols. The development of CCICheck led to my discovery of a bug in TSO-CC [14, 13], a coherence
protocol developed at the University of Edinburgh, and the subsequent fix of the bug by the protocol de-
velopers. A key idea in CCICheck was its novel ViCL (Value in Cache Lifetime) abstraction. ViCLs have
been used in subsequent research to formally model cache behaviour relevant to side-channel attacks [33],
enabling the automatic generation of security exploits (including new variants of Spectre and Meltdown).

Verifying Detailed Designs: As a design progresses, the early-stage monolithic specifications verified by
PipeProof and CCICheck must evolve to include new design details. However, today’s processors are
complex heterogeneous parallel systems, where distinct teams (and possibly different vendors) each de-
velop one or more components, and then connect them together to create the overall processor. Monolithic
specifications of such processors would be extremely unwieldy. To fix this problem, I developed Reality-
Check [1], which adds support for modularity and hierarchy to prior microarchitectural MCM verification
work [25]. RealityCheck enables each team to specify the orderings of their component independently and
then compose these specifications together to create a processor specification, mirroring real-world design.

RealityCheck is also the first methodology and tool to enable scalable automated formal MCM ver-
ification of hardware designs. Verifying monolithic specifications does not scale because the entire com-
plicated specification must be verified all at once. RealityCheck solves this problem through its support
for modular abstraction. Each RealityCheck module can be verified against an interface specification of
its external behaviour independently of the rest of the system. Then, when composing modules together
to create the processor specification, each module can simply be represented by its interface. This use of
modular abstraction decomposes overall processor MCM wverification into multiple smaller verification
problems, allowing MCM verification to scale even for large designs.

Implementation Verification: Design-time verification ensures design correctness, but engineers also need
to ensure that system implementations meet design requirements. For MCM verification of processor im-
plementations, I developed RTLCheck [4] in collaboration with NVIDIA researchers. RTLCheck is the first
automated tool for formal MCM verification of processor implementations written in Verilog RTL (reg-
ister transfer language). Given a hardware design’s ordering specification and a mapping from design
components to their RTL equivalents, RTLCheck automatically translates the design’s ordering properties
to equivalent RTL properties for a given test program. The RTL properties thus generated can be checked
by commercial RTL verifiers like Cadence’s JasperGold, easing the integration of RTLCheck into industry
workflows. RTLCheck uncovered a bug in the open-source RISC-V V-scale processor’s memory implemen-
tation [26], which we reported to the processor developers. RTLCheck was recognized as an “Honorable
Mention” for 2017 by the IEEE Micro Top Picks' selection committee.

Hardware-Software MCM Compeatibility: My co-authors and I developed TriCheck [6], the first method-
ology and tool enabling engineers to automatically check their hardware designs for compatibility with
programming language MCMs across a set of test programs. This work uncovered severe deficiencies in
the MCM specification of the open-source RISC-V instruction set, which is used extensively by the com-
puter hardware community. In response, the RISC-V Memory Model Working Group was formed, where
I and other MCM experts worked together to develop a robust formal MCM specification for RISC-V. (A
redesigned RISC-V MCM that fixed the issues we discovered was ratified in 2018.) TriCheck was recognized
as an IEEE Micro Top Pick® for the year 2017.

TriCheck also discovered two counterexamples to a “proven-correct” compiler mapping [9] for C/C++
atomicvariables to IBM Power and ARMv7 assembly language, where these “proven” mappings allowed
incorrect hardware behaviour in violation of C and C++ requirements. Using TriCheck’s counterexamples,
I pinpointed the specific issue with the published proof that erroneously allowed the flawed mappings to
be “proven” [5]. This discovery brought to light a critical issue with the C and C++ language MCMs that
was later fixed [20]. This finding also led to my discovery of three MCM bugs (since fixed) in IBM’s XL C++
compiler during a single-day in-person investigation at IBM.
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Future Research

Principled Design and Verification for a “Post-ISA” World: The end of Moore’s Law and Dennard Scal-
ing has caused a proliferation of heterogeneous parallel architectures, as architects attempt to continue
improving performance by creating specialised accelerators for certain types of computations [29]. Ap-
plications are increasingly breaking the hardware/software ISA abstraction to target accelerators directly,
leading to a “post-ISA” world [27]. However, the interfaces between such emerging hardware and software
still need to be explicitly and formally specified to make clear what the contract between hardware and
software is. Furthermore, when accelerators are working in parallel with general-purpose cores to process
data [29], a concurrency model for such hardware is also necessary. While progress has been made in this
area [15, 18, 31], much work remains to be done to create robust abstractions and models for this new era.
In the future, 1 will develop new hardware/software abstractions and concurrency models for emerging het-
erogeneous parallel architectures. These formal specifications will give software a clear and unambiguous
model of hardware to target, while still allowing software to take advantage of hardware specialisation.
They will ideally also provide some level of portability so that e.g. new iterations of an accelerator do
not require modification of code or the software toolchain. My computer architecture knowledge and my
MCM verification thesis work make me well-suited to develop such models.

Traditional verification flows that assume a single ISA for a processor also need to evolve for this new
architectural landscape. My thesis work has already made advances in this regard: RealityCheck’s mod-
ularity, hierarchy, and abstraction make it an excellent fit for heterogeneous parallel hardware, while the
ILA-MCM framework I worked on is also designed to specify and verify heterogeneous parallel hardware.
In the future, I will build on my thesis work to develop methodologies and tools for the formal verification
of emerging heterogenous parallel systems. The hardwarel/software abstractions and concurrency models 1
will develop (see above) will serve as specifications for such verification.

Automated Formal Specification Generation Through Higher-Level Hardware Design: Automated formal
verification requires formal design specifications, which can be difficult to write for those without prior
experience. For hardware, one alternative is to automatically extract these formal specifications from early-
stage architectural prototypes. A problem with this notion is that most hardware description languages
(HDLs) are very low-level (e.g. Verilog) and do not have higher-level semantic information.

Inspired by the Bluespec HDL and programming language type systems, I propose the use of higher-
level HDLs with types that can encode semantic information. Automated tools can then scan a proto-
type’s source code for elements of the relevant types and automatically generate a formal specification by
analysing executions containing these elements. e.g. If generating MCM specifications, one might search
for all structures of type MCMElement and then try to discover orderings between their events.

Progressive Verification of Other Domains: Progressive automated formal verification (Figure 1b) can be
applied to other domains in need of stringent verification, like cloud-based distributed systems. These
distributed systems are complex and highly concurrent. Their complexity results in bugs that cause node
crashes and unavailable services [23], resulting in the loss of industry revenue. In the future, I will cre-
ate methodologies and tools that enable progressive automated formal verification of distributed system
designs and implementations. I am well-suited for such research because event orderings in distributed
systems can be modelled using happens-before graphs similar to those in my dissertation work.

Meanwhile, cyber-physical systems like self-driving cars and robots consist of computing devices tightly
coupled with physical components that interact with the outside world. These systems are becoming more
widespread and are incorporating Internet connectivity and machine learning, making them more prone
to bugs. Such bugs can have disastrous effects, as in the case of the Boeing 737 Max disasters [16] and
recent fatal accidents involving Tesla’s Autopilot [21, 22]. In the future, I will develop approaches and tools
for the progressive automated formal verification of cyber-physical systems to help prevent such bugs. 1
am particularly interested in verifying safety properties that deal with concurrency (which are similar to
MCM properties from my thesis), as well as security properties (e.g. preventing remote hijacks of connected
vehicles), which have been verified using techniques similar to those in my thesis [33, 7].

Overall, my research goal is to realise a world where formal methods are a standard part of every hardware
and software engineer’s verification toolkit. These formal verification tools will be capable of automatically
proving an extensive set of properties while remaining easy to use. I believe that such mainstream use of
formal methods will go a long way towards making hardware and software bugs a thing of the past.
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