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CCI Mismatch Example (“Peekaboo”)

• Prefetch + Livelock Avoidance Mechanism + 

Inv Before Use = Consistency Violation!

Core 0 Core 1

x: Prefetch miss; issue GetS request

x: Downgrade to S, send [x = 0] to core 1

x: Issue GetM

x: Receive and note Inv, send Inv-Ack

(before data has arrived)

x: Receive Inv-Ack, perform store x = 1

y: Perform store y = 1

y: Load miss; issue GetS request

y: Downgrade to S, send [y = 1] to core 1

y: Perform load y = 1

x: Load miss; wait for (now stale) data 

currently in transit

x: Receive data [x = 0]; perform load

x = 0

Constraint-Based Enumeration

• Multiple solns → 

each further 

enumerated 

independently

• No solns → 

invalid scenario

• Cyclic graphs →

pruned (can’t 

become acyclic)

The Need for CCI Verification

• Coherence: propagate writes to other cores

• Consistency: ordering rules for rd./write visibility

• Independent verification of coherence and 

consistency leaves verification gap at CCI!
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• Peekaboo solution: ensure that coherence request for instr. that uses 

invalidated data is issued when that instr. is oldest load or store in 

program order [Sorin et al. primer]

Peekaboo Case Study (mp Litmus Test)

• Counterintuitive outcome for mp with membar [Alglave et al. ASPLOS15]

• If load-load fence does not ensure InvCache ordering, no cycle

Partial Incoherence (GPU) Case Study

CCICheck Toolflow

CCI Mismatch → Consistency Violation!

Coherence-Consistency Interface (CCI)

CCI = guarantees that coherence protocol provides to 
rest of microarchitecture + memory ordering 
guarantees that rest of microarchitecture expects from 
coherence protocol

+

=

Expected CoherenceSWMR, DVI, No Stale Data

Consistency

+

=

Expected CoherenceSWMR, DVI, No Livelock

CCI Mismatch
Orderings 

Not 
Enforced!

• CCI verification is critical to the correct operation of large or complex 

parallel systems

• CCICheck’s static CCI-aware microarchitectural consistency 

verification is a first step in this direction

• CCICheck uses µhb graphs and exhaustive enumeration of all 

possible litmus test executions to verify a microarchitecture

• The Value in Cache Lifetime (ViCL) abstraction, constraint-based 

enumeration, and intelligent pruning allow comprehensive yet 

tractable analysis

• CCICheck can handle partial incoherence, lazy coherence, and a 

variety of coherence protocol transitions

• CCICheck is open-source and publicly available at 

github.com/ymanerka/ccicheck

Conclusions

ViCL (Value in Cache Lifetime)

• Models cache occupancy and coh. transitions

• Formally, a ViCL is a 4-tuple 

(𝒄𝒂𝒄𝒉𝒆_𝒊𝒅, 𝒂𝒅𝒅𝒓𝒆𝒔𝒔, 𝒅𝒂𝒕𝒂_𝒗𝒂𝒍𝒖𝒆, 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒊𝒅)
• Maps onto period of time (relative to a single cache) 

over which cache line corresponding to 𝒄𝒂𝒄𝒉𝒆_𝒊𝒅 and 

𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒊𝒅 holds value 𝒅𝒂𝒕𝒂_𝒗𝒂𝒍𝒖𝒆 for address 

𝒂𝒅𝒅𝒓𝒆𝒔𝒔.

Traditional Cache Line States for co-mp

ViCLs for co-mp, including requests and downgrades 

(below)

Constraint:

Load i3 

requires 

source L1 

ViCL with 

same 

address 

and data

Two solutions 

to constraint:

•L1 ViCL of i1

•L1 ViCL of i2

• No eager invalidation of sharers, but self-invalidate on L1 miss
• InvCache edges model self-invalidate and complete cycle for mp

Lazy Coherence Case Study (TSO-CC)

• CCICheck was run on a variety of microarchitectures and coherence 

protocols across 85 litmus tests

• Geomean test case execution time < 10 seconds on all architectures

• Subsequent research used SMT solver-based methods to run most tests 

in just a few seconds! [ASPLOS 2016]

Results

CCI Match → Consistency Maintained!

• Inputs are µarch spec. and litmus test(s)

• 2 high-level enumeration steps: Path Enumeration & Constraint 

Satisfaction

• Intelligent pruning and unsatisfiable constraint detection keep runtimes 

scalable

CCICheck µarch specification
1. Instruction Paths
2. Per-Stage Orderings
3. Constraints for Instr. Paths

Path 
Enum.

Constraint 
Satisfaction

Pruning 
(Cycle 

Checking)
Pass/Fail

CCICheck

Compare

Litmus 
Tests

Coh. + consistency
(Spec Ld., GPUs, …

often interwoven!
…, Lazy Coherence)

Microarchitectural happens-before 

(µhb) graphs with ViCLs

• Executions modelled by µhb graphs

• Node → microarchitectural event or pipeline stage

• Edge → local happens-before relation between nodes

µhb graph for co-mp

ViCL Create 

and Expire 

map to 

nodes

SW edge
→ SWMR 

invariant

Transfer of 

data 

between 

caches

Use of 

ViCL value 

by load

Cyclic 

graphs →

forbidden by 

µarch

Acyclic 

graphs → 

allowed by 

µarch

co-mp Litmus Test sll Litmus Test

Nominated for Best Paper!

mp Litmus Test


