
CCICheck: Using µhb Graphs to Verify the Coherence-Consistency Interface
Yatin A. Manerkar, Daniel Lustig, Michael Pellauer (NVIDIA), Margaret Martonosi

CCI Mismatch Example (“Peekaboo”)

• Prefetch + Livelock Avoidance Mechanism + 

Inv Before Use = Consistency Violation!

Core 0 Core 1

x: Prefetch miss; issue GetS request

x: Downgrade to S, send [x = 0] to core 1

x: Issue GetM

x: Receive and note Inv, send Inv-Ack

(before data has arrived)

x: Receive Inv-Ack, perform store x = 1

y: Perform store y = 1

y: Load miss; issue GetS request

y: Downgrade to S, send [y = 1] to core 1

y: Perform load y = 1

x: Load miss; wait for (now stale) data 

currently in transit

x: Receive data [x = 0]; perform load

x = 0

Constraint-Based Enumeration

• Multiple solns → 

each further 

enumerated 

independently

• No solns → 

invalid scenario

• Cyclic graphs →

pruned (can’t 

become acyclic)

The Need for CCI Verification

• Coherence: propagate writes to other cores

• Consistency: ordering rules for rd./write visibility

• Independent verification of coherence and 

consistency leaves verification gap at CCI!

Arch. 
Level

µarch. 
Level

Ignore 
consistency
even when 

protocol affects 
consistency!

Coherence 
Verifiers

Consistency 
Verifiers

Assume abstract 
coherence
instead of 

protocol in use!

C

C

I

• Peekaboo solution: ensure that coherence request for instr. that uses 

invalidated data is issued when that instr. is oldest load or store in 

program order [Sorin et al. primer]

Peekaboo Case Study (mp Litmus Test)

• Counterintuitive outcome for mp with membar [Alglave et al. ASPLOS15]

• If load-load fence does not ensure InvCache ordering, no cycle

Partial Incoherence (GPU) Case Study

CCICheck Toolflow

CCI Mismatch → Consistency Violation!

Coherence-Consistency Interface (CCI)

CCI = guarantees that coherence protocol provides to 
rest of microarchitecture + memory ordering 
guarantees that rest of microarchitecture expects from 
coherence protocol

+

=

Expected CoherenceSWMR, DVI, No Stale Data

Consistency

+

=

Expected CoherenceSWMR, DVI, No Livelock

CCI Mismatch
Orderings 

Not 
Enforced!

• CCI verification is critical to the correct operation of large or complex 

parallel systems

• CCICheck’s static CCI-aware microarchitectural consistency 

verification is a first step in this direction

• CCICheck uses µhb graphs and exhaustive enumeration of all 

possible litmus test executions to verify a microarchitecture

• The Value in Cache Lifetime (ViCL) abstraction, constraint-based 

enumeration, and intelligent pruning allow comprehensive yet 

tractable analysis

• CCICheck can handle partial incoherence, lazy coherence, and a 

variety of coherence protocol transitions

• CCICheck is open-source and publicly available at 

github.com/ymanerka/ccicheck

Conclusions

ViCL (Value in Cache Lifetime)

• Models cache occupancy and coh. transitions

• Formally, a ViCL is a 4-tuple 

(𝒄𝒂𝒄𝒉𝒆_𝒊𝒅, 𝒂𝒅𝒅𝒓𝒆𝒔𝒔, 𝒅𝒂𝒕𝒂_𝒗𝒂𝒍𝒖𝒆, 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒊𝒅)
• Maps onto period of time (relative to a single cache) 

over which cache line corresponding to 𝒄𝒂𝒄𝒉𝒆_𝒊𝒅 and 

𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒊𝒅 holds value 𝒅𝒂𝒕𝒂_𝒗𝒂𝒍𝒖𝒆 for address 

𝒂𝒅𝒅𝒓𝒆𝒔𝒔.

Traditional Cache Line States for co-mp

ViCLs for co-mp, including requests and downgrades 

(below)

Constraint:

Load i3 

requires 

source L1 

ViCL with 

same 

address 

and data

Two solutions 

to constraint:

•L1 ViCL of i1

•L1 ViCL of i2

• No eager invalidation of sharers, but self-invalidate on L1 miss
• InvCache edges model self-invalidate and complete cycle for mp

Lazy Coherence Case Study (TSO-CC)

• CCICheck was run on a variety of microarchitectures and coherence 

protocols across 85 litmus tests

• Geomean test case execution time < 10 seconds on all architectures

• Subsequent research used SMT solver-based methods to run most tests 

in just a few seconds! [ASPLOS 2016]

Results

CCI Match → Consistency Maintained!

• Inputs are µarch spec. and litmus test(s)

• 2 high-level enumeration steps: Path Enumeration & Constraint 

Satisfaction

• Intelligent pruning and unsatisfiable constraint detection keep runtimes 

scalable

CCICheck µarch specification
1. Instruction Paths
2. Per-Stage Orderings
3. Constraints for Instr. Paths

Path 
Enum.

Constraint 
Satisfaction

Pruning 
(Cycle 

Checking)
Pass/Fail

CCICheck

Compare

Litmus 
Tests

Coh. + consistency
(Spec Ld., GPUs, …

often interwoven!
…, Lazy Coherence)

Microarchitectural happens-before 

(µhb) graphs with ViCLs

• Executions modelled by µhb graphs

• Node → microarchitectural event or pipeline stage

• Edge → local happens-before relation between nodes

µhb graph for co-mp

ViCL Create 

and Expire 

map to 

nodes

SW edge
→ SWMR 

invariant

Transfer of 

data 

between 

caches

Use of 

ViCL value 

by load

Cyclic 

graphs →

forbidden by 

µarch

Acyclic 

graphs → 

allowed by 

µarch

co-mp Litmus Test sll Litmus Test

Nominated for Best Paper!

mp Litmus Test


