
▪ Ran PipeProof on two microarchitectures

▪ simpleSC (SC) and simpleTSO (TSO)

▪ 3-stage in-order pipelines

▪ simpleTSO relaxes Write->Read ordering

▪ simpleTSO is infeasible without optimizations, but becomes 

feasible with Covering Sets Optimization

▪ With Covering Sets + Memoization, simpleSC verified in 

under 20 seconds and simpleTSO verified in under 41 mins

▪ Base PipeProof algorithm examines some ISA-level cycles 

multiple times

▪ Memoization eliminates redundant checks of cycles that 

have already been verified

▪ The above cycle would be verified by a base PipeProof

implementation 3 times (once for fr, once for po, once for rf)

▪ Optimization is implemented as follows:

If all ISA-level cycles containing ISA-level edge ri have been 

verified, do not peel off ri edges when checking subsequent 

ISA-level cycles

▪ This optimization enables our TSO case study to be run in 

under an hour

PipeProof: Automated Memory Consistency Proofs for Microarchitectural Specifications

Conclusions

▪ PipeProof: Automated All-Program Microarchitectural 

Memory Consistency Verification

• User need only provide ISA-level and µarch models, 
mappings, and chain invariants

• Designers no longer need to choose between 
completeness and automation

▪ Transitive Chain Abstraction allows inductive modelling and 

verification of the infinite set of all possible executions

• Abstraction is automatically refined as necessary to 
prove correctness

▪ Verified simple microarchitectures implementing SC and 

TSO in < 1 hour!

▪ Covering Sets Optimization and Memoization greatly 

reduce runtime
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Microarchitectural Correctness Proof

The Need for All-Program MCM Verification

== TSO?
▪ Does a microarchitecture obey its MCM for all programs?

▪ Prior work is either incomplete or manual verification

▪ Can we automatically prove correctness for all programs?

Microarchitectural happens-before (µhb) graphs

Automated Verification of Litmus Tests

[Image: Coq Development Team, LGPL]

All-Program Verification using Proof Assistants

[Vijayaraghavan et al. CAV 2015, Choi et al. ICFP 2017]
[Lustig et al. MICRO-47, …]

…
TC Abstraction Support Proof

▪ Ensure that ISA-level pattern and µarch. support TC 

Abstraction

▪ Proof is inductive

▪ Base case: Do initial ISA-level edges guarantee a transitive 

connection?

▪ Inductive case: Does extending the transitive chain extend 

the transitive connection?
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▪ If proof fails, µarch may be buggy; can check for cyclic 

counterexamples with a bounded search
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If design can’t be verified, a counterexample (a forbidden 
execution that is observable) is often returned

PipeProof Block Diagram
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▪ Abstractly represent repeated ISA-level edge patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use elsewhere

Code available at 
https://github.com/ymanerka/pipeproof

Results

Configuration simpleSC simpleTSO

Without 
Optimizations

225.9 sec Timeout

With Covering Sets 36.4 sec
(6.2x speedup)

19885.4 sec
(≈ 331 mins)

With Covering Sets 
+ Memoization

19.1 sec
(11.8x speedup)

2449.7 sec
(≈ 41 mins)

(8.1x speedup)

Memoization Optimization
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Covering Sets Optimization

▪ PipeProof must conduct verification across all possible 

transitive connections

▪ Each decomposition creates a new set of transitive 

connections

▪ This can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant 

transitive connections

▪ Graph A has a transitive connection from x to z

▪ Graph B has a transitive connection from y to z, but also 

has an edge from x to z through transitivity

▪ Correctness of A => Correctness of B, because B 

contains all of A’s edges + an edge from y to z

▪ B does not need to be explicitly checked, and is 

eliminated by the Covering Sets Optimization
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▪ Abstractions enable a finite representation of an infinite set of 

executions

▪ PipeProof’s novel TC Abstraction represents sequence 

(chain) of ISA-level edges as µhb edge (transitive connection) 

from start to end of chain

▪ Intermediate instructions in chain are not explicitly modelled

▪ Verification of infinite number of ISA-level cycles => 

verification across a finite number of transitive connections

▪ Microarchitectural support of abstraction automatically 

proven as a supporting proof

The Transitive Chain (TC) AbstractionISA-Level MCMs and Microarchitectural Ordering Specifications

▪ ISA-level MCMs defined in terms of acyclicity, irreflexivity, etc. of relational patterns [Alglave et al. TOPLAS 2014]

▪ Microarchitectural ordering specifications defined as set of µspec axioms [Lustig. et al. ASPLOS 2016]

An ISA-level execution of mp
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Axiom “Fetch_is_FIFO":
... EdgeExists ((i1, IF), (i2, IF))

=> AddEdge ((i1, EX), (i2, EX)).

...

µspec Microarchitectural Ordering Specification

acyclic (po U co U rf U fr)

ISA-Level MCM Specification of SC

Message passing (mp) litmus test

Nodes: Instructions
Edges: ISA-level relations

Nodes: Instr. sub-events
Edges: Happens-before relations

Cyclic graph => Unobservable
Acyclic graph => Observable
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