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The Need for All-Program MCM Verification
SB$

A e ==TSO?

» Does a microarchitecture obey its MCM for all programs?

= Prior work is either incomplete or manual verification

= Can we automatically prove correctness for all programs?

Automated Verification of Litmus Tests All-Program Verification using Proof Assistants
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ISA-Level MCMs and Microarchitectural Ordering Specifications

= [SA-level MCMs defined in terms of acyclicity, irreflexivity, etc. of relational patterns [Alglave et al. TOPLAS 2014]

» Microarchitectural ordering specifications defined as set of uspec axioms [Lustig. et al. ASPLOS 2016]

ISA-Level MCM Specification of SC
acyclic (po U co U rf U fr)

Message passing (mp) litmus test
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uspec Microarchitectural Ordering Specification

Axiom “Fetch is FIFO":
. EdgeExists ((i1, IF), (i2, IF))
=> AddEdge ((i1, EX), (i2, EX)).

An ISA-level execution of mp
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A phb graph of mp on simpleSC
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Nodes: Instructions
Edges: ISA-level relations

Nodes: Instr. sub-events
Edges: Happens-before relations

Cyclic graph => Unobservable
Acyclic graph => Observable

The Transitive Chain (TC) Abstraction
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= Abstractions enable a finite representation of an infinite set of
executions

» PipeProof’s novel TC Abstraction represents sequence
(chain) of ISA-level edges as puhb edge (transitive connection)
from start to end of chain

* Intermediate instructions in chain are not explicitly modelled

= Verification of infinite number of ISA-level cycles =>
verification across a finite number of transitive connections

= Microarchitectural support of abstraction automatically
proven as a supporting proof

TC Abstraction Support Proof

» Ensure that [SA-level pattern and parch. support TC
Abstraction

» Proof is inductive
» Base case: Do initial ISA-level edges guarantee a transitive

connection?
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= Inductive case: Does extending the transitive chain extend
the transitive connection?
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= |f proof fails, yarch may be buggy; can check for cyclic
counterexamples with a bounded search

Covering Sets Optimization

» PipeProof must conduct verification across all possible
transitive connections

» Fach decomposition creates a new set of transitive
connections

* This can quickly lead to a case explosion

» The Covering Sets Optimization eliminates redundant
transitive connections
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= Graph A has a transitive connection from x to z

» Graph B has a transitive connection from y to z, but also
has an edge from x to z through transitivity

= Correctness of A => Correctness of B, because B
contains all of A's edges + an edge fromy to z

= B does not need to be explicitly checked, and is
eliminated by the Covering Sets Optimization

Microarchitectural Correctness Proof
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Consider all possible Transitive Connections (light green arrows)

EX (r)
WB (q)

Acyclic graph =>
Represented executions
may be observable
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Consider all Transitive Connection Decompositions
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Decomposition C (Invalid)

Required edge from p to
g does not exist =>
Do not consider further

Chain Invariants

» Abstractly represent repeated ISA-level edge patterns

= Sometimes needed for refinement loop to terminate
= |nductively proven by PipeProof before their use elsewhere
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Memoization Optimization

» Base PipeProof algorithm examines some ISA-level cycles
multiple times

* Memoization eliminates redundant checks of cycles that
have already been verified

* The above cycle would be verified by a base PipeProof
implementation 3 times (once for fr, once for po, once for rf)
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= Optimization is implemented as follows:

If all ISA-level cycles containing ISA-level edge r; have been
verified, do not peel off r, edges when checking subsequent
ISA-level cycles

» This optimization enables our TSO case study to be run in
under an hour

Results

» Ran PipeProof on two microarchitectures
simpleSC (SC) and simpleTSO (TSO)
= 3-stage in-order pipelines

simpleTSO relaxes Write->Read ordering

Configuration simpleSC simpleTSO
Without 225.9 sec Timeout
Optimizations
With Covering Sets 36.4 sec 19885.4 sec
(6.2x speedup) (= 331 mins)
With Covering Sets 19.1 sec 2449.7 sec
+ Memoization (11.8x speedup) (= 41 mins)
(8.1x speedup)

= simpleTSO is infeasible without optimizations, but becomes
feasible with Covering Sets Optimization

= With Covering Sets + Memoization, simpleSC verified in
under 20 seconds and simpleTSO verified in under 41 mins
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Result: parch Proven?
Counterexample found?

If design can’t be verified, a counterexample (a forbidden
execution that is observable) is often returned

Mappings link

ISA-level and
uarch executions

Conclusions

= PipeProof: Automated All-Program Microarchitectural
Memory Consistency Verification

« User need only provide ISA-level and pyarch models,
mappings, and chain invariants

» Designers no longer need to choose between
completeness and automation

= Transitive Chain Abstraction allows inductive modelling and
verification of the infinite set of all possible executions

 Abstraction is automatically refined as necessary to
prove correctness

= Verified simple microarchitectures implementing SC and
TSO in <1 hour!

» Covering Sets Optimization and Memoization greatly
reduce runtime




