PipeProof: Automated Memory Consistency Proofs for Microarchitectural Specifications

Yatin A. Manerkar, Daniel Lustig (NVIDIA), Margaret Martonosi, Aarti Gupta

Nominated for Best Paper

PRINCETON UNIVERSITY

under an hour

Results

PipeProof Block Diagram

Conclusions

 Ran PipeProof on two microarchitectures simpleSC (SC) and simpleTSO (TSO)

3-stage in-order pipelines

simpleTSO relaxes Write->Read ordering

Configuration	simpleSC	simpleTSO
Without Optimizations	225.9 sec	Timeout
With Covering Sets	36.4 sec (6.2x speedup)	19885.4 sec (≈ 331 mins)
With Covering Sets + Memoization	19.1 sec (11.8x speedup)	2449.7 sec (≈ 41 mins) (8.1x speedup)

 simpleTSO is infeasible without optimizations, but becomes feasible with Covering Sets Optimization

With Covering Sets + Memoization, simpleSC verified in under 20 seconds and simpleTSO verified in under 41 mins

• PipeProof: Automated All-Program Microarchitectural Memory Consistency Verification

• User need only provide ISA-level and µarch models, mappings, and chain invariants

• Designers no longer need to choose between completeness and automation

Transitive Chain Abstraction allows inductive modelling and verification of the infinite set of all possible executions

• Abstraction is automatically refined as necessary to prove correctness

Verified simple microarchitectures implementing SC and TSO in < 1 hour!

 Covering Sets Optimization and Memoization greatly reduce runtime

Code available at https://github.com/ymanerka/pipeproof