
▪ Ran PipeProof on two microarchitectures

▪ simpleSC (SC) and simpleTSO (TSO)

▪ 3-stage in-order pipelines

▪ simpleTSO relaxes Write->Read ordering

▪ simpleTSO is infeasible without optimizations, but becomes 

feasible with Covering Sets Optimization

▪ With Covering Sets + Memoization, simpleSC verified in 

under 20 seconds and simpleTSO verified in under 41 mins

▪ Base PipeProof algorithm examines some ISA-level cycles 

multiple times

▪ Memoization eliminates redundant checks of cycles that 

have already been verified

▪ The above cycle would be verified by a base PipeProof

implementation 3 times (once for fr, once for po, once for rf)

▪ Optimization is implemented as follows:

If all ISA-level cycles containing ISA-level edge ri have been 

verified, do not peel off ri edges when checking subsequent 

ISA-level cycles

▪ This optimization enables our TSO case study to be run in 

under an hour

PipeProof: Automated Memory Consistency Proofs for Microarchitectural Specifications

Conclusions

▪ PipeProof: Automated All-Program Microarchitectural 

Memory Consistency Verification

• User need only provide ISA-level and µarch models, 
mappings, and chain invariants

• Designers no longer need to choose between 
completeness and automation

▪ Transitive Chain Abstraction allows inductive modelling and 

verification of the infinite set of all possible executions

• Abstraction is automatically refined as necessary to 
prove correctness

▪ Verified simple microarchitectures implementing SC and 

TSO in < 1 hour!

▪ Covering Sets Optimization and Memoization greatly 

reduce runtime

Yatin A. Manerkar, Daniel Lustig (NVIDIA), Margaret Martonosi, Aarti Gupta

Nominated for Best Paper

(Checks of other 
possible transitive 

connections…)

Can 
concretize?

No

Acyclic graph =>
Abstract Counterexample, 

rerun refinement loop

Cyclic graph =>
Represented executions 
correctly unobservable

Required edge from p to 
q does not exist =>

Do not consider further

(Other decompositions…)

Return 
Counterexample

Yes

Consider all Transitive Connection Decompositions

i1 in

IF

EX

WB

fr

Some 
Tran.
Conn.

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr

Decomposition A (Valid)✓

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr

Decomposition C (Invalid)

p

i1 i2

IF

EX

WB

co

r

q

in

fr

Decomposition B (Valid)?

Consider all possible Transitive Connections (light green arrows)

p

i1

r

q

in

IF

EX

WB

fr

Acyclic graph => 
Represented executions 

may be observable

Abstract Counterex.
(AbsCex)?

i1 in

IF

EX

WB

fr

Graph cyclic => 
Represented executions 

are unobservable

Abstraction Sufficient
(NoDecomp)✓ …



i1 in

IF

EX

WB

co

Some 
Tran.
Conn.

i1 in

IF

EX

WB

rf

Some 
Tran.
Conn.

… … …

Cycles containing fr Cycles containing rf

i1 in

IF

EX

WB

po

Some 
Tran.
Conn.

Cycles containing po Cycles containing co

N/A

p

r

q

Microarchitectural Correctness Proof

The Need for All-Program MCM Verification

== TSO?
▪ Does a microarchitecture obey its MCM for all programs?

▪ Prior work is either incomplete or manual verification

▪ Can we automatically prove correctness for all programs?

Microarchitectural happens-before (µhb) graphs

Automated Verification of Litmus Tests

[Image: Coq Development Team, LGPL]

All-Program Verification using Proof Assistants

[Vijayaraghavan et al. CAV 2015, Choi et al. ICFP 2017]
[Lustig et al. MICRO-47, …]

…
TC Abstraction Support Proof

▪ Ensure that ISA-level pattern and µarch. support TC 

Abstraction

▪ Proof is inductive

▪ Base case: Do initial ISA-level edges guarantee a transitive 

connection?

▪ Inductive case: Does extending the transitive chain extend 

the transitive connection?

i1 i2

IF

EX

WB

po
i1 i2

IF

EX

WB

rf
i1 i2

IF

EX

WB

fr
i1 i2

IF

EX

WB

co

⟹
i1 in

IF

EX

WB

rn in+1

Some 
Tran 

Conn.

i1 in+1

IF

EX

WB

Some Transitive 
Connection

▪ If proof fails, µarch may be buggy; can check for cyclic 

counterexamples with a bounded search

Microarchitecture 
Ordering Spec.

ISA-Level 
MCM Spec.

PipeProof

ISA Edge -> 
Microarch. Mapping

Result: µarch Proven?
Counterexample found?

Chain 
Invariants

TC Abstraction 
Support Proof

Microarch. 
Correctness 

Proof

Cex. Generation

Proof of 
Chain Invariants

FailFail

PassPass

Mappings link 
ISA-level and 

µarch executions

Supporting 
proofs provide 
foundation for 

Microarch. 
Correctness 

Proof

If design can’t be verified, a counterexample (a forbidden 
execution that is observable) is often returned

PipeProof Block Diagram

Chain Invariants

Abstract 
Counterexample

Repeating ISA-
Level Pattern

Chain Invariant 
Applied

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

i1 i4
fr

i2
po_plus

i5

▪ Abstractly represent repeated ISA-level edge patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use elsewhere

Code available at 
https://github.com/ymanerka/pipeproof

Results

Configuration simpleSC simpleTSO

Without 
Optimizations

225.9 sec Timeout

With Covering Sets 36.4 sec
(6.2x speedup)

19885.4 sec
(≈ 331 mins)

With Covering Sets 
+ Memoization

19.1 sec
(11.8x speedup)

2449.7 sec
(≈ 41 mins)

(8.1x speedup)

Memoization Optimization

i1

fr

i2

i3

i4

rf

po po

Covering Sets Optimization

▪ PipeProof must conduct verification across all possible 

transitive connections

▪ Each decomposition creates a new set of transitive 

connections

▪ This can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant 

transitive connections

▪ Graph A has a transitive connection from x to z

▪ Graph B has a transitive connection from y to z, but also 

has an edge from x to z through transitivity

▪ Correctness of A => Correctness of B, because B 

contains all of A’s edges + an edge from y to z

▪ B does not need to be explicitly checked, and is 

eliminated by the Covering Sets Optimization

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr
BA

i1 in

IF

EX

WB

fr

Some 
Tran.
Conn

.

i1 in

IF

EX

WB

rf

Some 
Tran.
Conn

.

i1 in

IF

EX

WB

po

Some 
Tran.
Conn.

⟹
Using TC 

Abstraction

i1 in
r1…n-1

fr

All non-unary cycles 
containing fr

i1 in

fr

Some µhb
edge from i1

to in
(transitive 

connection)

IF

EX

WB

▪ Abstractions enable a finite representation of an infinite set of 

executions

▪ PipeProof’s novel TC Abstraction represents sequence 

(chain) of ISA-level edges as µhb edge (transitive connection) 

from start to end of chain

▪ Intermediate instructions in chain are not explicitly modelled

▪ Verification of infinite number of ISA-level cycles => 

verification across a finite number of transitive connections

▪ Microarchitectural support of abstraction automatically 

proven as a supporting proof

The Transitive Chain (TC) AbstractionISA-Level MCMs and Microarchitectural Ordering Specifications

▪ ISA-level MCMs defined in terms of acyclicity, irreflexivity, etc. of relational patterns [Alglave et al. TOPLAS 2014]

▪ Microarchitectural ordering specifications defined as set of µspec axioms [Lustig. et al. ASPLOS 2016]

An ISA-level execution of mp

[x] ← 1

fr

[y] ← 1

r1 ← [y]

r2 ← [x]

rf
po po

(i4)

(i3)(i1)

(i2)

A µhb graph of mp on simpleSC

(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po

Axiom “Fetch_is_FIFO":
... EdgeExists ((i1, IF), (i2, IF))

=> AddEdge ((i1, EX), (i2, EX)).

...

µspec Microarchitectural Ordering Specification

acyclic (po U co U rf U fr)

ISA-Level MCM Specification of SC

Message passing (mp) litmus test

Nodes: Instructions
Edges: ISA-level relations

Nodes: Instr. sub-events
Edges: Happens-before relations

Cyclic graph => Unobservable
Acyclic graph => Observable

Lds.

L2
WB

Mem.

SB
Exec.

Dec.

Fetch

WB

Mem.

SB
Exec.

Dec.

Fetch

Mem. Hierarchy


