PipeProof: Automated Memory Consistency Proofs for Microarchitectural Specifications

Yatin A. Manerkar, Daniel Lustig (NVIDIA), Margaret Martonosi, Aarti Gupta

Nominated for Best Paper

UNIVERSITY

1 Lds.

The Need for All-Program MCM Verification
SB$

A e ==TSO?

» Does a microarchitecture obey its MCM for all programs?

= Prior work is either incomplete or manual verification

= Can we automatically prove correctness for all programs?

Automated Verification of Litmus Tests All-Program Verification using Proof Assistants
Core 0 Core 1 |
)x]—1 | (Thread 0 | Thread 1
feon 3 . A7 T — I~ |
Thread (x4 \ 1< [
GD) St] « \e‘\,e *12 <+ [x]
(i2) Id mp viel |wed
(i3) CO (i@ y] « 1)
[Allowed. \{\ LX) | G513 Iyl =
| 13) 12 «+ [y] | (i6) 14 « [x] \
| Allow: rl=1, r2=0, r3=1, r4=0 \)a\ .
Microarchitectural happens-before (uhb) graphs N\a‘; -

_

COTOOOTT0

e o o [Vijayaraghavan et al. CAV 2015, Choi et al. ICFP 2017]
[(Lustig et al. MICRO-47, ...] [Image: Coqg Development Team, LGPL]

ISA-Level MCMs and Microarchitectural Ordering Specifications

= [SA-level MCMs defined in terms of acyclicity, irreflexivity, etc. of relational patterns [Alglave et al. TOPLAS 2014]

» Microarchitectural ordering specifications defined as set of uspec axioms [Lustig. et al. ASPLOS 2016]

ISA-Level MCM Specification of SC
acyclic (po U co U rf U fr)

Message passing (mp) litmus test
Core 0 Core 1

(i1) [x] « 1 | (i3) r1 « [y]
(i2) [y] « 1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=0

+

uspec Microarchitectural Ordering Specification

Axiom “Fetch is FIFO":
. EdgeExists ((i1, IF), (i2, IF))
=> AddEdge ((i1, EX), (i2, EX)).

An ISA-level execution of mp

(i1)

[x] < 1

(i3

po
rf fr

[yl <1

(i4

)

N—

rl & [y]

lpo

r2 & [x]

A phb graph of mp on simpleSC

IF

EX

WB

fr

A

. PO rf ., PO
(i1) =P (i2) =———> (i3)—P> (i4)

——

Nodes: Instructions
Edges: ISA-level relations

Nodes: Instr. sub-events
Edges: Happens-before relations

Cyclic graph => Unobservable
Acyclic graph => Observable

The Transitive Chain (TC) Abstraction

fr .m
Using TC h In
Some phb
: IF |
\. Abstraction edge from i,

toi,
(transitive '
connection)

All non-unary cycles
containing fr

= Abstractions enable a finite representation of an infinite set of
executions

» PipeProof’s novel TC Abstraction represents sequence
(chain) of ISA-level edges as puhb edge (transitive connection)
from start to end of chain

* Intermediate instructions in chain are not explicitly modelled

= Verification of infinite number of ISA-level cycles =>
verification across a finite number of transitive connections

= Microarchitectural support of abstraction automatically
proven as a supporting proof

TC Abstraction Support Proof

» Ensure that [SA-level pattern and parch. support TC
Abstraction

» Proof is inductive
» Base case: Do initial ISA-level edges guarantee a transitive

connection?
. fr . I | .. po, .
i1 —P i2 i1 —P i2 il i2

i1 i2
IF IF IF IF
EX EX EX EX
WB WB WB WB

= Inductive case: Does extending the transitive chain extend
the transitive connection?

I1 In

r . . .
— Ih+1 g 'n+1
IF | IF |
Some Some Transitive
EX | Tran | EX Connection |
Conn.
we () | WB I

= |f proof fails, yarch may be buggy; can check for cyclic
counterexamples with a bounded search

Covering Sets Optimization

» PipeProof must conduct verification across all possible
transitive connections

» Fach decomposition creates a new set of transitive
connections

* This can quickly lead to a case explosion

» The Covering Sets Optimization eliminates redundant
transitive connections

I I, Iy I
IF (x IF
EX EX (y
WB Z WB

= Graph A has a transitive connection from x to z

» Graph B has a transitive connection from y to z, but also
has an edge from x to z through transitivity

= Correctness of A => Correctness of B, because B
contains all of A's edges + an edge fromy to z

= B does not need to be explicitly checked, and is
eliminated by the Covering Sets Optimization

Microarchitectural Correctness Proof

Cycles containing fr

Cycles containing rf

,’ fr ,’ rf
I | | |
IF IF
Some Some
EX Tran. EX Tran.
Conn. Conn.
WB WB
| .
| .
| \ 4
1 se e
A4

Cycles containing po

Cycles containing co

¥ po .
| | | |
IF IF
Some Some
EX Tran. EX Tran.
onn. Conn.
WB WB
\ 4 \ 4
00 00

Consider all possible Transitive Connections (light green arrows)

EX (r)
WB (q)

Acyclic graph =>
Represented executions
may be observable

Can No
. I N
concretize?

EX

WB

- -
A ~)
Abstract Counterex. Abstraction Sufficient
(AbsCex) ? (NoDecomp)\/
K fr Fofr)

Graph cyclic =>
Represented executions
are unobservable

L

IYes
\ 4

Return

Counterexample
X -
-

="
Decomposition A (Valid)\/

Cyclic graph =>
Represented executions
correctly unobservable

Consider all Transitive Connection Decompositions

=T R =mmm,
- ‘\Ns:----} (Other decompositions...)

v
Decomposition B (Valid) ?

Acyclic graph =>

Abstract Counterexample,

rerun refinement loop

~
y
-~

(Checks of other
possible transitive
connections...)

NN‘

Decomposition C (Invalid)

Required edge from p to
g does not exist =>
Do not consider further

Chain Invariants

» Abstractly represent repeated ISA-level edge patterns

= Sometimes needed for refinement loop to terminate
= |nductively proven by PipeProof before their use elsewhere

i1 i3 L% 4 s

Abstract
Counterexample

P

1 255 3% 4 is

Repeating ISA-
Level Pattern

i

o plus
1 i —2=P i Ty s

Chain Invariant
Applied

i

Memoization Optimization

» Base PipeProof algorithm examines some ISA-level cycles
multiple times

* Memoization eliminates redundant checks of cycles that
have already been verified

* The above cycle would be verified by a base PipeProof
implementation 3 times (once for fr, once for po, once for rf)

Some
EX Tran.
Conn

Some
EX Tran.
Conn

= Optimization is implemented as follows:

If all ISA-level cycles containing ISA-level edge r; have been
verified, do not peel off r, edges when checking subsequent
ISA-level cycles

» This optimization enables our TSO case study to be run in
under an hour

Results

» Ran PipeProof on two microarchitectures
simpleSC (SC) and simpleTSO (TSO)
= 3-stage in-order pipelines

simpleTSO relaxes Write->Read ordering

Configuration simpleSC simpleTSO
Without 225.9 sec Timeout
Optimizations
With Covering Sets 36.4 sec 19885.4 sec
(6.2x speedup) (= 331 mins)
With Covering Sets 19.1 sec 2449.7 sec
+ Memoization (11.8x speedup) (= 41 mins)
(8.1x speedup)

= simpleTSO is infeasible without optimizations, but becomes
feasible with Covering Sets Optimization

= With Covering Sets + Memoization, simpleSC verified in
under 20 seconds and simpleTSO verified in under 41 mins

Microarch. Eail
Correctness

Proof PipeProof

lFaiI

| Cex. Generation |

PipeProof Block Diagram
Microarchitecture || ISA-Level ISA Edge -> Chain
Ordering Spec. MCM Spec. || Microarch. Mapping || Invariants
Supporting -
oroofs provide Proof of Pass | TC Abstraction | Pass | Microarch.
foundation for Chain Invariants Support Proof Correctness
Proof

l

Result: parch Proven?
Counterexample found?

If design can’t be verified, a counterexample (a forbidden
execution that is observable) is often returned

Mappings link

ISA-level and
uarch executions

Conclusions

= PipeProof: Automated All-Program Microarchitectural
Memory Consistency Verification

« User need only provide ISA-level and pyarch models,
mappings, and chain invariants

» Designers no longer need to choose between
completeness and automation

= Transitive Chain Abstraction allows inductive modelling and
verification of the infinite set of all possible executions

 Abstraction is automatically refined as necessary to
prove correctness

= Verified simple microarchitectures implementing SC and
TSO in <1 hour!

» Covering Sets Optimization and Memoization greatly
reduce runtime

