
Progressive Automated Formal

Verification of Memory Consistency in

Parallel Processors

Yatin Avdhut Manerkar

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Professor Margaret Martonosi

January 2021

© Copyright by Yatin Avdhut Manerkar, 2020.

All rights reserved.

Abstract

In recent years, single-threaded hardware performance has stagnated due to transistor-

level limitations stemming from the end of Moore’s Law and Dennard scaling. Instead,

today’s designs improve performance through heterogeneous parallelism: the use of

multiple distinct processing elements on a chip, many of which are specialised to run

specific workloads. The processing elements in such architectures often communicate

and synchronise with each other via loads and stores to shared memory. Memory

consistency models (MCMs) specify the ordering rules for such loads and stores. MCM

verification is thus critical to parallel system correctness, but is notoriously hard to

conduct and requires examining a vast number of scenarios.

Verification using formal methods can provide strong correctness guarantees based

on mathematical proofs, and is an excellent fit for MCM verification. This dissertation

makes several contributions to automated formal hardware MCM verification, bringing

such techniques much closer to being able to handle real-world architectures. Firstly,

my RTLCheck work enables the automatic linkage of formal models of design orderings

to RTL processor implementations. This linkage helps push the correctness guarantees

of design-time formal verification down to taped-out chips. The linkage doubles as a

method for verifying microarchitectural model soundness against RTL. Secondly, my

RealityCheck work enables scalable automated formal MCM verification of hardware

designs by leveraging their structural modularity. It also facilitates the modular

specification of design orderings by the various teams designing a processor. Thirdly,

my PipeProof work enables automated all-program hardware MCM verification. A

processor must respect its MCM for all possible programs, and PipeProof enables

designers to prove such results automatically.

This dissertation also proposes Progressive Automated Formal Verification, a novel

generic verification flow. Progressive verification emphasises the use of automated

formal verification at multiple points in system development—starting at early-stage

iii

design—and the linkage of the various verification methods to each other. Progressive

verification has multiple benefits, including the earlier detection of bugs, reduced

verification overhead, and reduced development time. The combination of PipeProof,

RealityCheck, and RTLCheck enables the progressive verification of MCM properties

in parallel processors, and serves as a reference point for the development of future

progressive verification flows.

iv

Acknowledgements

A dissertation may be the single-authored work of a PhD student, but it is rarely

completed due to the efforts of that student alone. In my case, there are many people

who have helped me in my journey towards and through grad school, and to whom I

offer my sincerest thanks.

First and foremost, I must thank my adviser, Prof. Margaret Martonosi. She gave

me an offer of admission when few others did, and has stood by me through both good

times and bad. A student’s adviser is the most important person in their graduate

school travails, and I could not ask for a better adviser than Margaret. I thank her

for valuable advice and guidance on a plethora of subjects over the years, and for

teaching me how to do research that is truly meaningful. Margaret is an exemplary

role model for any young professor to aspire to, and I hope to implement the lessons I

learned from her in my future academic career.

I would never have gotten to this point in my life if not for the unconditional love

and support of my parents and sister. Whether it was moving to another country

with my education in mind, coming to visit me and helping me keep my life in order,

giving me a home that was always open to me, or just being a sympathetic ear for the

frustrations of grad school, they have always been there for me when I needed them. I

am eternally grateful for all they have done (and continue to do) for me. I also thank

my aunt and her family for being my family in the New York area during my PhD.

They were always ready to provide help of a more local nature, and I’m very grateful

for all the times that they did.

Dan Lustig has been a valuable mentor and friend to me for my entire time at

Princeton. As a senior PhD student, Dan helped me enormously in finding my feet

at Princeton and learning how to do research. After he graduated, I benefited from

his advice during our weekly teleconferences (which for a while required him to be

online at 7:30am). Without him, I may never have looked at memory consistency

v

verification for my PhD research—or gone into formal methods at all. I thank him for

showing me that architecture research doesn’t have to be about showing 20% speedup

on a set of benchmarks, for advice and counsel numerous times over the years, and

for being the best damn mentor that any first-year PhD student could ever hope to

have. I fondly recall us discussing litmus test µhb graphs on the whiteboard outside

our offices in my first year, and I look forward to more such discussions in the future.

Aarti Gupta has been a tremendous positive influence on my dissertation and

research trajectory ever since I asked her to serve on my generals committee (on

Margaret’s advice). I thank her for being my guide to the world of formal verification,

for giving me a rigorous foundation of formal methods knowledge on which to build my

future research, and for patiently answering all my questions about formal verification,

however basic they may have been. Aarti is a veritable ocean of formal verification

knowledge. I will never forget the times I asked her what prior work existed on a

formal methods topic, and came away with a telling reference that helped me on my

way to solving the problem I was facing.

I also thank Margaret, Aarti, Dan, and the other members of my committee,

Sharad Malik and Zak Kincaid, for the feedback they have provided on my dissertation

work. The questions they raised and the answers I discovered in response have changed

this dissertation for the better.

I thank Caroline Trippel—my “research sibling”—for making me laugh, for our

many MCM discussions, for teaching me about food and drink, and for valuable job

market advice. I must also thank the other current and former members of MRMGroup

with whom I interacted over the years: Themis, Tae Jun, Tyler, Aninda, Naorin, Luwa,

Prakash, the “Quantum Boyz” Wei and Teague, Marcelo, Yipeng, Esin, Abhishek, Ali,

Elba, Logan, Yavuz, Ozlem, and Wenhao. You all are the sauce that makes the meal

of grad school palatable, and I am glad to have known each of you. I also thank my

vi

other research collaborators, Michael Pellauer and Hongce Zhang, for our productive

research discussions.

I’m also indebted to the friends I made at Princeton beyond the confines of our lab.

I thank Sumegha Garg and Arjun “Darth” Bhagoji for inviting a lonely grad student

to be a part of their friend circles. Through them I made many other friends who I

cherish: the Akshays (big and small), Ariel, Nikunj, Divya, Sravya, Gopi, Nivedita,

Vivek, Pranav, and Sanjay. I especially thank Arjun and his board game crew for

many fun evenings (and for keeping me sane during the pandemic). I thank the PL

group—Andrew, Dave, Aarti, Santiago, Qinxiang, Olivier, Joomy, Annie, Ryan, Matt,

Nick, Zoe, Lauren, Charlie, Devon, and the rest—for allowing an architect to attend

their weekly reading group and for showing me the joys of programming language

research. I thank Deep Ghosh for many excellent discussions on Star Wars and The

Lord of the Rings, “Sir” Yogesh Goyal for helpful advice, and both for sharing the

joys and sorrows of being a Manchester United fan. And to AB, many thanks for all

that you did for me.

I thank the staff at the Davis International Center, especially Katie Sferra, for

their assistance in navigating life on a student visa in the US through all the executive

orders and presidential proclamations.

I thank Ben Lin for being a stalwart friend through thick and thin for almost

15 years (and hopefully many more), since we were both eager young undergrads

at Waterloo. Ben taught me the value of staying positive even in tough times—an

essential trait for any grad student.

Finally, while there are many people who helped me through my PhD, there are

others who are responsible for me even applying to PhD programs. I thank Tom

Wenisch for showing me how much fun research can really be, and for giving me a

solid base in computer architecture and parallel computer architecture. I went into

my independent work with him looking to get research experience, and emerged with

vii

a desire to earn my doctorate. I am very grateful for his support in my decision to

come back to academia, and he continues to be someone whose advice I value. I thank

Anwar Hasan, Mark Aagaard, and Hiren Patel for awakening my interest in computer

architecture at Waterloo. And I thank Mrs. Mitchell, my high school principal, for

taking pains to give a young immigrant the best high school education a tiny Canadian

town could provide.

viii

To my grandfathers, R.M.S.M. and D.D.N.K.,

both great men in their own ways.

ix

Contents

Abstract . iii

Acknowledgements . v

1 Introduction 1

1.1 The Rise of Heterogeneous Parallelism 3

1.1.1 The Quest for Improved Hardware Performance 3

1.1.2 The Multicore Era and Heterogeneity 4

1.2 The Need for Memory Consistency Models 7

1.3 The Need for MCM Verification . 12

1.4 Unresolved Challenges in MCM Verification 16

1.5 Dissertation Contributions . 20

1.6 Outline . 23

2 Background and Related Work 25

2.1 Memory Consistency Model (MCM) Background 26

2.1.1 Litmus Tests . 26

2.1.2 Speculative Implementations of MCMs 28

2.1.3 Weak/Relaxed MCMs . 32

2.1.4 The Need for Formal MCM Specification and Verification . . . 38

2.2 Formal Verification Background . 41

2.2.1 Model Checking . 41

x

2.2.2 Interactive Proof Assistants 48

2.2.3 Operational and Axiomatic Models 49

2.3 MCM Specification and Verification 50

2.3.1 Instruction Set (ISA) Memory Consistency Models 51

2.3.2 Program Verification Under MCMs 53

2.3.3 Hardware Ordering Specifications 54

2.3.4 Manually Proving MCM Correctness of Hardware Implementations 56

2.3.5 Dynamic MCM Verification 57

2.4 Automated Formal Microarchitectural MCM Verification with PipeCheck 58

2.4.1 Microarchitectural Happens-Before (µhb) Graphs 59

2.4.2 The µspec Domain-Specific Language 62

2.4.3 Automatically Verifying Correctness of a Litmus Test 64

2.4.4 Moving Beyond PipeCheck . 67

2.5 Summary . 68

3 Checking Soundness and Linking to RTL Verification 69

3.1 Introduction . 70

3.2 Motivating Example . 75

3.3 RTLCheck Overview . 78

3.4 SystemVerilog Assertions (SVA) Background 80

3.4.1 Linear Temporal Logic (LTL) 81

3.4.2 Regular Expressions . 85

3.4.3 Suffix Implication . 86

3.4.4 SVA Assertions and Assumptions 87

3.5 Handling the SVA Verifier Assumption Over-Approximation 89

3.5.1 Reasoning Behind the Over-Approximation 90

3.5.2 The Assumption Over-Approximation 91

3.5.3 The Over-Approximation in MCM Verification 94

xi

3.5.4 Solution: Outcome-Aware Assertion Generation 98

3.6 RTLCheck Operation . 100

3.6.1 Assumption Generation . 101

3.6.2 Overall µspec Axiom Translation Procedure 104

3.6.3 Mapping Individual µhb Edges to SVA 105

3.6.4 Mapping Node Existence Checks to SVA 110

3.6.5 Filtering Match Attempts . 111

3.7 Case Study: Multi-V-scale . 112

3.7.1 V-scale Microarchitecture . 113

3.7.2 Multi-V-scale . 114

3.7.3 Modelling Multi-V-scale in µspec 115

3.8 RTLCheck Methodology and Usage Flows 115

3.8.1 RTLCheck Methodology . 116

3.8.2 RTLCheck Usage Flows . 117

3.9 Results . 117

3.9.1 Bug Discovered in the V-scale Processor 117

3.9.2 RTLCheck Runtimes . 120

3.10 Related Work on Formal RTL Verification 123

3.11 Chapter Summary . 124

4 Scalable MCM Verification Through Modularity 126

4.1 Introduction . 127

4.2 Motivating Example . 131

4.2.1 Flat Verification using PipeCheck 131

4.2.2 Deficiencies of Flat Verification 133

4.3 RealityCheck Overview . 137

4.4 Abstraction and its Benefits . 138

4.5 µspec++ Modular Design Specifications 140

xii

4.5.1 Implementation Axiom Files 140

4.5.2 Module Definition Files . 142

4.5.3 Interface Specification and Node Mappings 148

4.6 RealityCheck Operation . 148

4.6.1 Step 1: Microarchitecture Tree Generation 149

4.6.2 Step 2: Operation Assignment 149

4.6.3 Step 3: Formula Generation 150

4.6.4 Steps 4 & 5: Translate to Z3 and Graph Generation 151

4.7 RealityCheck Usage Flows . 152

4.8 Methodology and Results . 154

4.8.1 Methodology . 154

4.8.2 Verifying Litmus Tests . 155

4.8.3 Interface Verification . 159

4.8.4 Bug Finding . 160

4.9 Chapter Summary . 161

5 Automated All-Program MCM Verification 163

5.1 Introduction . 164

5.2 PipeProof Operation . 166

5.2.1 PipeProof Overview . 169

5.2.2 Symbolic ISA-Level Executions 170

5.2.3 Mapping ISA-level Executions to Microarchitecture 171

5.2.4 The TC Abstraction: Representing Infinite ISA-level Chains . 172

5.2.5 Abstract Counterexamples . 175

5.2.6 Concretization and Decomposition: The Refinement Loop . . 176

5.2.7 Termination of the PipeProof Algorithm 178

5.3 Supporting Proofs and Techniques . 179

5.3.1 Ensuring Microarchitectural TC Abstraction Support 180

xiii

5.3.2 The Need for Chain Invariants and their Proofs 183

5.3.3 Theory Lemmas . 186

5.3.4 Over-Approximating to Ensure an Adequate Model 186

5.3.5 Inductive ISA Edge Generation 188

5.4 PipeProof Optimizations . 189

5.4.1 Covering Sets Optimization 189

5.4.2 Eliminating Redundant Work Using Memoization 190

5.5 Methodology, Results, and Discussion 191

5.6 Related Work . 194

5.7 Chapter Summary . 196

6 Progressive Automated Formal Verification 197

6.1 Testing and Verification in a Traditional Development Flow 198

6.2 The Benefits of Early-Stage Design-Time Verification 200

6.3 The Need for Post-Implementation Verification 203

6.4 Verification at Intermediate Points in the Development Timeline . . . 204

6.5 Progressive Automated Formal Verification 206

6.6 Chapter Summary . 211

7 Retrospective, Future Directions, and Conclusion 213

7.1 Zooming Out: The Check Suite for MCM Verification 213

7.2 Lessons Learned: A Retrospective . 216

7.2.1 Importance of Operational Model Support 216

7.2.2 Benefits of a Type System for µspec and µspec++ 219

7.3 Future Work . 221

7.3.1 Furthering Automated All-Program MCM Verification 221

7.3.2 A Unified Modelling Framework Supporting Axiomatic and

Operational Models . 223

xiv

7.3.3 Progressive Verification of Other Domains 224

7.3.4 Developing Abstractions and Concurrency Models for Emerging

Hardware . 225

7.4 Dissertation Conclusions . 228

A Hardware Features and Attributes That Impact MCM Behaviour 235

A.1 Non-FIFO Coalescing Store Buffers 235

A.2 Out-of-order Execution . 237

A.3 Dependencies . 238

A.4 Relaxing Write Atomicity . 240

A.5 Cache Coherence and its Relationship to MCMs 243

A.6 Cumulativity . 245

A.7 Virtual Memory . 246

A.8 Summary . 247

Bibliography 249

xv

Chapter 1

Introduction

“ Non omnia possumus omnes, but at least we can
step into a boat at a stated time, can we not?”

—Patrick O’Brian
Post Captain

Computing today has permeated deep into our daily lives. We rely on computers

to run our phones, process financial transactions, navigate when travelling, and for

many other functions. In other words, computing has become an indispensable tool

for humanity to function. This trend will only increase in future years, with the rise of

artificial intelligence (AI) and the development of cyber-physical systems like robots

and self-driving cars.

The continued importance of computing in our daily lives makes it critical to

ensure that these systems run correctly. The ubiquity of computing today means that

the ramifications of hardware and software bugs are higher than ever. Computing

bugs today can lead to car crashes [Lee19], Internet outages [Str19], and the leakage

of confidential information [KHF+19].

At the same time, computing systems have evolved over time to become consid-

erably more complex in the quest for improved performance and energy efficiency.

Today’s microprocessors are complex integrated circuits consisting of a variety of

components working together, and are capable of executing billions of instructions per

1

second [Wal18]. Likewise, today’s software is also quite complex, consisting of vast

numbers of individual modules connected to each other, and often running on large

and distributed collections of nodes. Such software may be comprised of millions of

lines of code [Alg17]. These factors make verification of today’s computing systems a

difficult task.

A key contributor to the complexity of systems today is the fact that they are

parallel systems. Processors today routinely contain at least 4 to 8 general-purpose

processing cores that can operate concurrently, and may contain over 40 accelerators for

speeding up specific types of computation [WS19]. On the software side, programming

languages today routinely have native support for concurrent threads of computation.

These threads and cores process data concurrently and often communicate via shared

memory. The memory consistency model (MCM) of such a system specifies the

ordering rules for the memory operations that are used for such communication.

Consequently, if parallel systems do not obey their MCMs, then they are liable to

malfunction. This makes verification of MCM implementations critical to parallel

system correctness.

The work contained in this dissertation makes significant advances towards thor-

ough, comprehensive verification of MCM properties in both parallel hardware. This

chapter provides an overview of the challenges in MCM verification and the solutions

proposed by this dissertation to meet those challenges. I begin by examining the

trends in systems that have led to MCMs becoming a critical part of most computing

systems today.

2

1.1 The Rise of Heterogeneous Parallelism

1.1.1 The Quest for Improved Hardware Performance

For decades, the interface that hardware provides to the programmer has been that of

an instruction-level abstraction (ISA), where (from the point of view of the programmer)

processors execute instructions one at a time and in program order. Beneath this

abstraction, computer architects and VLSI engineers improved hardware performance

along two major axes. The first avenue for performance improvement was at the circuit

level, and is often characterised using a combination of Moore’s Law [Moo06a] and

Dennard Scaling [DGY+74]. Moore’s Law predicted that the number of transistors

on an integrated circuit would double every two years1, giving computer architects

more transistors to use for their chip. Meanwhile, under Dennard scaling, reducing

the dimensions of transistors by a factor of S increased their maximum switching

speed (i.e. the maximum clock frequency of the processor) by a factor of S, but their

power density could be kept constant by correspondingly reducing their supply voltage

by a factor of S. Roughly speaking, Dennard scaling enabled engineers to reduce a

chip to half its size and twice its speed at every new generation of transistors, while

consuming the same amount of power.

The second avenue for the improvement of performance was through the devel-

opment of improved hardware designs or microarchitectures (as opposed to circuits).

Over the years, numerous microarchitectural innovations and optimizations have been

developed. For instance, pipelining broke up the execution of an instruction into a

number of pieces, and allowed a processor to execute parts of multiple different instruc-

tions in the same clock cycle. Since the work performed in each cycle was reduced, the

design could then be run at a higher clock frequency, improving performance. Another

1Moore initially predicted a doubling of transistors every year, but a decade later revised his
estimate to a doubling of transistors every two years [Moo06b].

3

example is that of CPU caches, which were developed to improve memory latency and

reduce the amount of time processors spend waiting on memory [HP17].

Over the years, computer architects also innovated to improve performance through

instruction-level parallelism (ILP) [HP17], or the execution of multiple processor

instructions in parallel (as opposed to one at a time). ILP includes pipelining, but also

a number of other techniques. These techniques include the execution of instructions

out of order (when it would not change the results of the computation), prediction

of the results of branch instructions before their inputs were ready, and speculative

execution of instructions based on the prediction of their inputs or the results of

branch prediction. Another technique closely related to ILP is that of memory-level

parallelism (MLP), where multiple memory operations are sent to memory in an

overlapping or parallel fashion to reduce the overall number of cycles spent waiting on

memory [Gle98]. Notably, each of these schemes took care to ensure that their use

did not change the results of the program (which was a single stream of instructions).

1.1.2 The Multicore Era and Heterogeneity

Figure 1.12 [Rup20] shows trends in microprocessor data over the last 48 years. It

does so by plotting attributes (including processor clock frequency, number of cores,

and power usage) of various real processors over that time period. As Figure 1.1

shows, around the mid-2000s, Dennard scaling began to break down, primarily due to

leakage power issues. The supply voltage of a transistor (VDD) needs to stay above

its threshold voltage (Vt) in order for the transistor to function as a binary switch.

Thus, decreasing VDD in keeping with Dennard scaling requires decreasing Vt as well.

However, leakage power (power consumed by a transistor regardless of whether it is

switching) grows exponentially as threshold voltage decreases [Bos11b]. This makes

2Figure 1.1 is “48 Years of Microprocessor Trend Data” by Karl Rupp (https://www.karlrupp.net/),
and is licensed under the ‘Creative Commons Attribution 4.0 International Public License’ (ht-
tps://creativecommons.org/licenses/by/4.0/legalcode).

4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data

Figure 1.1: Trends in microprocessor parameters, including clock frequency, power
usage, and number of cores over the last 48 years [Rup20].

it impossible to keep power density constant when decreasing transistor dimensions

beyond a certain point, leading to the breakdown of Dennard scaling.

While architects and circuit engineers were unable to keep power density constant,

they were still able to decrease transistor dimensions and increase the number of

transistors on a single chip as per Moore’s Law. However, due to the breakdown of

Dennard scaling, these devices could not turn all their transistors on at the same

time, as the combined power usage of all the transistors would be too high.3 The

issues related to power delivery and dissipation encountered by architects and circuit

designers when trying to scale designs beyond the realms of Dennard scaling came to

be known as the “power wall” [Bos11b].

Faced with the power wall and the end of Dennard scaling, architects could no

longer increase processor clock frequency in order to improve performance. Instead,

3In recent years, this inability to activate all transistors at once has become known as the “dark
silicon” phenomenon [GSV+10].

5

they began using the extra transistors on chips to create multiple processing cores, each

of which could execute its own stream of instructions in parallel. Figure 1.1 depicts

this through the increase in the number of logical cores per chip from the mid-2000s

onwards. Theoretically, an N -core version of a processor could provide N times the

performance of a single-core version of that processor, due to its ability to execute N

instruction streams in parallel. This would provide large speedups without having to

increase clock frequency (and thus power usage). However, the extent to which such a

multicore processor can be utilised is dependent on how much the application can be

parallelised (i.e., split into multiple pieces that can be run in parallel with each other).

For instance, a linear speedup (i.e., N times the performance of single-core when using

an N -core processor) is only possible for applications that can be parallelised into N

equal parts that can each run in parallel with each other.

In recent years, architects have also begun to adopt heterogeneity as a means

to develop energy-efficient processors. Heterogeneity is the use of specialised cores

for specific types of tasks. Specialising cores to execute specific types of workloads

allows architects and circuit engineers to optimise for those workloads, and remove

unnecessary general-purpose functionality from such accelerators. This results in huge

performance improvements and energy efficiency gains for the workloads that the

accelerator is designed for. The field of computer architecture has seen a wide variety

of accelerators in recent years, including for machine learning [CDS+14] and graph

analytics [HWS+16] workloads. In fact, the recent Apple A12 System-on-Chip (SoC)

contains more than 40 accelerators [WS19].

This heterogeneous parallelism of today’s hardware has percolated up the stack

to the level of high-level languages (HLLs) and software. Today’s programming

languages like C [ISO11a], C++ [ISO11b], and Java [GJS+14] all have native thread

support to enable parallel programming. Operating systems such as the Linux kernel

have been revised to be concurrent in order to make the best use of today’s parallel

6

Thread 0 Thread 1

(i1) x = 1; (i3) y = 1;

(i2) if (y == 0) { (i4) if (x == 0) {
critical section critical section

} }
Can both threads enter their critical section at

the same time?

Figure 1.2: A simple synchronisation algorithm based on Dekker’s algorithm [Dij02].
This program can be used to illustrate how counterintuitive program outcomes can
occur due to MCM issues. The initial values of x and y are assumed to be 0.

i1

i2 i4

i3

Figure 1.3: The happens-before orderings for Figure 1.2’s program that are required
for both loads (i2 and i4) to return 0 under SC. The cycle in the graph indicates that
such a result is impossible under SC (as it would require an instruction to happen
before itself).

hardware [AMM+18]. Furthermore, with the advent of heterogeneity, specialised

toolchains have been developed for certain types of accelerators. TensorFlow [Goo20]

and PyTorch [F+20] are two such flows for machine learning accelerators. The

programming of systems that support shared-memory concurrency necessitates memory

consistency models to describe the behaviour of the parallel system’s shared memory,

as discussed next.

1.2 The Need for Memory Consistency Models

The various cores in a parallel processor often interact with each other via a shared

memory abstraction. Cores thus synchronise and communicate with each other

through load and store operations to shared memory. In a single-core system with

a single instruction stream, figuring out the result of each load instruction is quite

7

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Memory Hierarchy

Core 0 Core 1

Figure 1.4: A microarchitecture with two cores, each with five-stage pipelines and
a store buffer (SB). This design is a simplistic example of how common hardware
optimizations like store buffers can lead to weak MCM behaviours.

straightforward. If we define program order as the order in which instructions appear

in the program’s instruction stream, then a load to a given address x simply returns

the value written by the last store to address x before that load in program order.

However, in a multicore processor, deducing the values that a load can return is

substantially more involved.

Consider the simple synchronisation algorithm in Figure 1.2, based on Dekker’s

algorithm [Dij02]. Here, two threads each want to access the same shared resource

in their critical section. Assume all addresses have a value of 0 before the execution

of the program. Each thread has one flag variable (which is shared with the other

thread): thread 0’s flag is x and thread 1’s flag is y. In this synchronisation algorithm,

each thread sets its own flag and then reads the value of the other thread’s flag. A

thread only enters its critical section if its flag is set and the other thread’s flag is

not set. Can the loads in Figure 1.2’s program return values other than 1 or 0? Is it

valid for both loads (i2 and i4) to return a value of 0 in the same execution? These

questions necessitate a specification for the behaviour of the parallel processor’s shared

memory abstraction, called a memory consistency model or memory model [AG96],

henceforth abbreviated as MCM.

MCMs specify the ordering rules for memory and synchronization operations in

parallel programs. In essence, they dictate what value will be returned when a parallel

8

program does a load. Since the multicore era, the ISA specifications of parallel pro-

cessors have been updated to include MCM specifications for processors implementing

those ISAs. The simplest and most intuitive MCM is sequential consistency (SC),

defined by Leslie Lamport in 1979 [Lam79]. Under sequential consistency, the results

of the overall program must correspond to some in-order interleaving of the program

statements or instructions from each individual core or thread. Each core or thread

must execute its memory operations in program order. Only one thread or core can

execute memory operations at any given time. Furthermore, each memory operation

must be performed atomically—in other words, it must become visible to all threads

or cores at the same time. Each load must return the value of the last store to its

address in the overall total order of memory operations corresponding to its execution.

To illustrate SC, consider the execution of Figure 1.2’s program. Under SC, can

both the loads i2 and i4 return 0 in the same execution? For i2 to return 0, it must

execute before i3. Likewise, for i4 to return 0, it must execute before i1. However,

since each thread must execute its memory operations in program order, i1 must

execute before i2 and i3 before i4. Each of these orderings is reflected by an arrow

in Figure 1.3’s graph. Together, they form a cycle, indicating that for both i2 and i4

to return 0, one or more of the program statements must happen before itself, which

is impossible. Thus, under SC, it is forbidden for both i2 and i4 to return 0 in the

same execution. The synchronisation algorithm will therefore work as expected under

SC, and at most one thread will be in its critical section at any time.

While sequential consistency is a simple and intuitive MCM, its semantics put it at

odds with the vast majority of processor microarchitectures today. The microarchitec-

tural optimizations mentioned in Section 1.1.1 were developed in the single-core era,

where processors only had one core and one instruction stream operating at any time.

Microarchitectural features like store buffers, out-of-order execution, and memory-level

parallelism (MLP) routinely reorder the execution of memory instructions to improve

9

performance, but such reordering violates SC. Consider the execution of Figure 1.2’s

program on the microarchitecture in Figure 1.4, where each core has a five-stage

pipeline and its own store buffer [HP17]. (Assume thread 0 runs on core 0 and thread 1

runs on core 1.) Since memory latencies are high, cache misses on stores4 can notably

increase execution time. In this microarchitecture, instead of sending stores directly

to the memory hierarchy (and stalling the pipeline until they complete), cores send

stores to the store buffer and continue execution of other instructions while waiting

for the stores to complete. The store buffer handles sending stores to the memory

hierarchy independently of the core’s pipeline. The store buffer thus allows the core

to overlap the latency of store misses with the execution of other instructions, thus

reducing the effective latency of store misses. Subsequent loads check the store buffer

for their address to ensure they get the latest value. Loads return the value of the

latest entry for their address from the store buffer if one exists, and go to the memory

hierarchy otherwise.

While the use of store buffers improves performance, it also makes it possible

for both loads (i2 and i4) in Figure 1.2’s program to return 0. In particular, store

buffers allow core 0 to put i1 in its store buffer and send i2 to memory before i1

has completed, thus reordering i1 and i2 from the point of view of other cores. If

we consider thread 0’s part of Figure 1.2’s program in isolation, then the use of a

store buffer would not change the result. The final value of x would be 1, and the

final value of y would still be 0. However, in a multicore context, the reordering

becomes architecturally visible (i.e., reflected in the values returned by the program’s

loads). Specifically, core 0 could put i1 in its store buffer, and core 1 could do the

same with i3. Then, core 0 and core 1 could send i2 and i4 to memory before the

stores i1 and i3 completed, thus allowing both loads to return 0. In a nutshell, the

microarchitectural optimizations that were invisible to programmers in a single-core

4Assuming a write-allocate cache.

10

setting become programmer-observable when those cores are used in a multicore

processor.

In order to implement SC, architects would either have to forgo any optimiza-

tions that reordered memory operations or only reorder memory operations speculat-

ively [Hil98,BMW09]. (Section 2.1.2 provides further details on the latter.) Forgoing

optimizations that reorder memory operations would result in a huge performance

hit, which is unacceptable to the majority of processor users. Meanwhile, speculative

reordering of memory operations results in complex designs that must keep track of

when reorderings are observed by other cores and roll back appropriately. Furthermore,

speculative execution is vulnerable to side-channel attacks [KHF+19,TLM18b].

As a result, most of today’s processors (including all commercial ones) do not

implement SC. Instead, they implement weak or relaxed MCMs (also known as weak

memory models) [OSS09, PFD+18, AMT14, RIS19] that relax one or more types of

orderings among memory operations.5 For instance, the MCM of x86 processors from

Intel and AMD is Total Store Order (TSO) [OSS09], which relaxes orderings between

stores and subsequent loads. Thus, unlike SC, TSO allows the outcome of Figure 1.2’s

program where both loads return 0. To enable synchronization between cores, ISAs

that implement weak MCMs provide other instructions capable of enforcing ordering

between memory operations where necessary. For example, x86 provides an MFENCE

(memory fence) instruction that can be placed between i1 and i2 and between i3 and

i4 in Figure 1.2 to prevent the hardware from reordering those two stores. A possible

implementation of the MFENCE would be to drain the store buffer before executing

any memory operations that are after the MFENCE in program order. (Section 2.1.3

provides further background information on weak MCMs.)

5Processors implementing weak MCMs may also speculatively reorder memory operations other
than those relaxed by their MCM, and roll back such speculation if the speculative reorderings would
be detected.

11

Most programmers do not program in the assembly language of a processor’s ISA,

but in high-level programming languages like C, C++, and Java. These languages

have their own MCMs [ISO11a, ISO11b, GJS+14] which describe the behaviour of

memory as seen by the various threads in a high-level language program. Most

programming language MCMs are based on the SC-for-DRF theorem [AH90,GLL+90],

which enables the program to behave as if the hardware were implementing SC as

long as the programmer has added sufficient synchronization between the threads in

their program. Section 2.1.3 contains a brief overview of the SC-for-DRF theorem.

1.3 The Need for MCM Verification

MCMs are defined at interfaces between layers of the hardware-software stack. The

MCM of such an interface describes the ordering guarantees that must be provided

by lower layers of the stack, and consequently the ordering guarantees that upper

layers of the stack can rely on. For example, the MCM of an instruction set like x86

defines the ordering guarantees that must be provided by x86 hardware for any parallel

program. Likewise, it defines the ordering guarantees that any x86 assembly-language

program can expect the hardware to maintain. Similarly, the MCM of a high-level

language like C++ or Java defines the ordering guarantees that a programmer can

expect the language runtime to provide for their code. These required orderings must

be maintained by the lower layers of the stack—in this case, a combination of the

compiler and hardware.

If the layers of a parallel system do not obey their MCMs, then parallel programs

will not run correctly on the system. As an example, consider once more the program

from Figure 1.2. A programmer might write such code for a processor whose MCM is

SC, and use it to synchronise between threads. In such a case, the programmer would

expect that at most one thread would be in its critical section at any time (i.e., both

12

loads could never return 0). However, if the processor was buggy and violated SC—for

instance, by using store buffers to conduct non-speculative reordering of memory

operations—this would no longer be true. It would then be possible for both threads

to enter their critical section at the same time, thus breaking the synchronisation

mechanism. As such, MCM verification is critical to parallel system correctness.

With concurrent systems becoming both more prevalent and more complex, MCM-

related bugs involving hardware are more common than ever. Intel processors have

experienced at least two transactional memory bugs in recent years [Hac14, Int20]. In

another case, ambiguity about the ARM ISA-level MCM specification led to a bug

where neither hardware nor software was enforcing certain orderings [AMT14,ARM11].

With no cost-effective hardware fix available, ARM had to resort to a low-performance

compiler fix instead. MCM-related issues have also surfaced in concurrent GPU

programs [ABD+15,SD16]. Finally, the computer security community has recognized

that MCM bugs may lend themselves to security exploits [GNBD16]. The work in

this dissertation also uncovers an MCM bug in an existing system (see Section 3.9.1).

This illustrates that MCM bugs will continue to occur without careful design and the

use of verification approaches such as those in this dissertation.

The traditional method of conducting verification is to run tests on the system, but

such dynamic verification approaches are insufficient for conducting MCM verification.

The reason for this is that today’s parallel systems (including multicore processors) are

nondeterministic [DLCO09]. This means that a parallel program may give one result

when run once on a multicore processor, and a different result when run a second

time. For instance, even on a processor implementing SC, Figure 1.2 may give one of 3

results: i2 may return 1 and i4 may return 0, i2 may return 0 while i4 returns 1, or

both loads may return 1. Which execution occurs depends on the order in which the

stores and loads reach memory from the two cores. Furthermore, even two executions

that give the same architectural result may differ microarchitecturally. For example, in

13

one execution a load may read a value from the cache (if it was already present there),

and in another execution the load might fetch the same value from main memory. As

a result, even if a program such as Figure 1.2 were run a million times on a processor

and the outcome where both loads return 0 never showed up, this does not guarantee

that the outcome will never occur on the processor.

If using dynamic verification, there is no way to guarantee that one has tested all

possible microarchitectural executions for a given program. Instead, MCM properties

are best suited to be verified using formal methods. In formal verification, a model (i.e.,

a representation) of the hardware or software being verified is specified in some form

of mathematical logic. The verification procedure then uses mathematical techniques

to formally prove the correctness of the model. Provided that the model accurately

represents the system being verified, a proof of the model’s correctness implies that

the hardware or software is in fact correct. For the rest of this dissertation, unless

otherwise specified, I use the term “verification” to mean verification using formal

methods. Meanwhile, I use the term “validation” to mean all techniques for checking

or ensuring the correctness of a system, including both dynamic testing-based methods

and formal verification.

Formal verification approaches can vary in the degree of automation they support.

One one end, some formal verification methods (e.g., Kami [VCAD15,CVS+17]) require

users to manually write proofs of theorems in a proof assistant, and an automated

tool then checks that the proofs do indeed prove the corresponding theorems. On the

other hand, formal verification approaches like model checking [CHV18] (Section 2.2.1)

generally only require users to write a specification of the system and the property they

wish to verify. An automated tool then either proves the property correct or returns a

counterexample (an execution that does not satisfy the property). Other verification

approaches may be partially automated, e.g., Ivy [PMP+16] conducts interactive

verification guided by the user. The work in this dissertation utilises automated

14

formal verification approaches based on model checking. Section 2.2 provides further

background on formal verification.

Since MCMs are defined for both processor ISAs and high-level programming

languages, MCM verification is a full-stack problem.6 Hardware engineers need to

verify that their processor correctly implements its MCM, but writers of compilers

for high-level languages must also ensure that the code generated by their compilers

maintains the ordering guarantees of the high-level language MCM. If either the

hardware or compiler do not maintain their required MCM guarantees, parallel

programs will not run correctly on the hardware. Furthermore, if the hardware

and software do not agree on who is responsible for maintaining which part of high-

level language MCM guarantees, this can result in incorrect program executions as

well [ARM11].

In this dissertation, the term “MCM verification” refers to verification that hard-

ware and the software runtime of a high-level language (e.g. compiler and OS) correctly

maintain the MCM guarantees of the hardware ISA and the high-level programming

language. In contrast, this dissertation does not focus on program verification under

various MCMs [ND13, OD17, AAA+15, AAJL16, AAJ+19, KLSV17, KRV19], which

assumes that the hardware and software runtime correctly maintain MCM guarantees

and verifies that a program satisfies its high-level specification (i.e., the programmer’s

intent). (Section 2.3.2 surveys prior work on program verification under various

MCMs.)

In addition to being a factor across the hardware/software stack, MCMs have

ramifications throughout the hardware design timeline. While verification is tradi-

tionally thought of as something that is conducted post-implementation, one can

derive large benefits by beginning hardware MCM verification much earlier. At the

point of early-stage processor design, the choice of MCM for a processor can enable or

6MCMs are sometimes also defined for intermediate representations, like the LLVM IR [CV17] or
NVIDIA PTX [LSG19].

15

preclude the use of certain microarchitectural features. For instance, choosing SC as a

processor’s MCM prevents the use of store buffers (except through speculation and

rollback; see Section 2.1.2). If a processor design utilises microarchitectural features

(or a combination thereof) that violate its MCM, but this design flaw is only caught

in post-implementation verification, then this necessitates a redesign (significantly

delaying the development of the chip) or a software workaround [ARM11] (which can

be heavy-handed and reduce performance). It would be much more efficient to catch

such design bugs as early as possible by conducting design-time MCM verification

during early-stage design.

As the design evolves, MCM verification should continue to be conducted to ensure

that the development of the design does not introduce any bugs that would violate

the MCM. Of course, once the design is implemented in Register Transfer Language

(RTL) like Verilog, the implementation must also be verified to ensure that it meets

MCM requirements.

1.4 Unresolved Challenges in MCM Verification

In response to the need for MCM verification, there has been a large amount of work on

formally specifying and verifying MCMs in the past decade or so. (Chapter 2 provides

a survey of this related work.) A large portion of prior formal MCM specification and

verification work treated hardware as correct (i.e. matching architectural intent) and/or

only verified the MCM correctness of hardware using dynamic testing [OSS09,AMSS11,

SSA+11,MHMS+12,AMT14,ABD+15,GKM+15,FGP+16,WBBD15,WBSC17,FSP+17,

AMM+18,CSW18,PFD+18]. As Section 1.3 above explains, dynamic testing cannot

guarantee the absence of bugs (even for tested programs) due to the nondeterminism

of today’s multiprocessors. As such, there existed a gap in the MCM verification of

16

parallel systems that needed to be filled through the development of formal MCM

verification approaches for hardware designs and implementations.

In recent years, there have been two lines of work for the formal MCM verification

of hardware. One approach, Kami [VCAD15,CVS+17], enables designers to write their

hardware in a proof assistant and manually prove its correctness. A proof assistant

like Coq [Coq04] is a tool that aids users in writing proofs of theorems that they can

specify in the proof assistant. The proof assistant is capable of verifying whether the

user’s proof does indeed prove the theorem it purports to, using an approach based on

programming language type checking [Chl13]. It also keeps track of what techniques

have been used in the proof and what remains to be proven. While Kami is capable of

proving the MCM correctness of hardware designs, the proofs require a large amount

of manual effort and formal methods expertise. Thus, to produce an efficient formally

verified hardware design using Kami, one would need expertise in both computer

architecture and formal methods. However, most computer architects do not have

formal methods expertise (and vice versa). As such, Kami is not well-suited for use

by typical computer architects. (Section 2.3.4 provides further background on Kami.)

The other prior approach for formal MCM verification of hardware designs is

PipeCheck [LPM14,LSMB16], which is based on model checking [CHV18]. (Sections

2.2.1 and 2.4 provide further background on model checking and PipeCheck respect-

ively.) PipeCheck was the first automated approach for MCM verification of hardware

designs against ISA-level MCM specifications. Given a microarchitectural ordering

specification for a hardware design and a litmus test7 outcome, PipeCheck is capable

of automatically verifying whether the given outcome will ever be observable on the

design. PipeCheck verifies one test program at a time, and its automation enables it

to be used by computer architects rather than just formal methods experts.

7A small 4-8 instruction program used to test or verify MCM implementations. Section 2.1.1
covers litmus tests in detail.

17

In this dissertation, I use the term “PipeCheck” to refer to the current incarnation

of the PipeCheck approach as realised in its follow-on work COATCheck [LSMB16].

COATCheck built on the initial PipeCheck work [LPM14] by adding a domain-specific

language (µspec) for specifying microarchitectural orderings and developing a custom

SMT solver to conduct PipeCheck’s model checking. COATCheck also added the

ability to specify and verify microarchitectural orderings related to virtual memory,

but this capability is largely orthogonal to the advances made in this dissertation.

Section 2.4 provides further details on the PipeCheck approach.

Even with the creation of PipeCheck, there still remained a number of unsolved

research challenges in MCM verification. One such challenge is that of verifying

model soundness. If a model is sound with respect to a system, then a proof of

the model’s correctness will imply that the real system is in fact correct. Using an

unsound model can result in false negatives (i.e., the model can be formally verified

as correct, but the real system is incorrect) which allow bugs to slip through formal

verification. Despite the importance of verifying model soundness, prior work either

provided no method for soundness verification or only verified model soundness using

dynamic testing. For example, if creating a PipeCheck model for the verification of an

existing processor, PipeCheck provides no way to formally verify that such a model is

sound with respect to the real processor implementation written in RTL like Verilog.

Similarly, the formal models of existing ISA-level MCMs (Section 2.3.1) were only

verified for soundness against existing implementations of those ISAs through dynamic

testing and consultation with architects. In other words, neither ISA-level MCM

specifications nor PipeCheck models have been formally verified as being sound with

respect to real processor RTL. This increases the possibility of bugs going undetected

when such models are used for formal verification.

Another unsolved challenge is that of verification scalability. The monolithic MCM

verification of approaches like PipeCheck does not scale to large detailed designs such

18

as those used in commercial processors. This is because—like many model checking

approaches [BSST09]—PipeCheck uses Satisfiability Modulo Theories (SMT) solvers8

which are NP-complete [Coo71]. As such, once verification queries are beyond a

certain size, the tool’s runtime and/or memory usage tends to explode. Approaches

like PipeCheck verify the MCM correctness of a design as a single unit, so it is

infeasible to use them to verify detailed designs.

A third challenge is that of verification coverage. The vast majority of prior

automated MCM verification approaches [AMT14,LPM14,LSMB16,WBSC17] only

conduct litmus test-based verification or bounded verification of a set of test programs.9

While verifying a processor or compiler for a large number of tests gives engineers

confidence that their system is correct, there always remains the possibility that the

system contains a bug which can only be detected by a program not present in the

test suite. Furthermore, there are an infinite number of possible programs, so they

cannot each be tested individually. For hardware MCM verification, engineers had

to choose between manual verification across all programs using Kami or automated

verification for a bounded set of programs using PipeCheck. No single prior approach

provides automated all-program hardware MCM verification.

A fourth challenge deals with the need for MCM verification at multiple points

in the development timeline of a system. For example, PipeCheck is intended for

MCM verification of early-stage designs, long before they are implemented in RTL.

However, MCM verification of RTL implementations is crucial as well, because even if

a design is verified as being correct, a buggy implementation of that design in RTL

may still violate the processor’s MCM. Even so, PipeCheck provides no way to link

8Given a propositional logic formula F , a Boolean satisfiability (SAT) solver can examine all
possible assignments to the variables in F . If an assignment to the variables exists which makes F
true, the solver will return that assignment. Otherwise it will return that the formula is unsatisfiable.
SMT builds on SAT, adding the ability to express properties and systems using various theories, thus
improving both expressibility and verification performance. Section 2.2.1 provides further details on
SAT and SMT-based model checking.

9Dodds et al. [DBG18] conduct automated MCM verification of C/C++ compiler optimizations
across all possible programs, and their work is a notable exception to this rule.

19

Architecture (ISA)

Microarchitecture

RTL (e.g. Verilog)

RTLCheck
[Chapter 3]

PipeProof
[Chapter 5]

RealityCheck
[Chapter 4]

Development Timeline:

Coverage Scalability

Soundness +
RTL Linkage

Progressive Automated Formal Verification for Hardware MCM Properties
[Chapter 6]

Early-Stage

Design

System

Implementation

Figure 1.5: The work in this dissertation, organised vertically according to the levels
of the hardware/software stack that it covers, and ordered horizontally according to
the point in the design timeline it covers. Each work of research is annotated with the
challenges in MCM verification that it addresses, as well as the dissertation chapter in
which it is covered.

its verification to the verification of the processor’s eventual RTL implementations.

PipeCheck also provides no easy way for a microarchitectural model to evolve as

the design of the processor progresses towards an RTL implementation. There is no

straightforward way in PipeCheck to replace the high-level specification of individual

components with their detailed design specifications as the design is fleshed out in

more detail.

The work in this dissertation develops methodologies and tools to combat these

previously unsolved challenges, making large strides forward in the field of MCM

verification. These contributions are enumerated next.

1.5 Dissertation Contributions

Figure 1.5 provides a graphical depiction of the work in this dissertation. The work is

ordered vertically according to the levels of the hardware/software stack that it covers,

and is ordered horizontally according to the point in the design timeline it covers.

Figure 1.5 also annotates the parts of the dissertation that address the challenges of

soundness, scalability, and coverage respectively.

20

This dissertation makes the following contributions:

• Linking Automated MCM Verification to Real Processor Implement-

ations: This dissertation enables microarchitectural ordering specifications used

for automated MCM verification to be linked to RTL implementations written in

Verilog for the first time. Prior work on automated hardware MCM verification

only went down to microarchitecture and could not be linked to real implement-

ations, limiting its effectiveness in ensuring the correctness of taped-out chips.

The linkage developed by my work (RTLCheck) enables correctness guarantees

proven for early-stage design ordering specifications to be easily pushed down to

the eventual RTL implementations. The linkage of microarchitectural models

to RTL also doubles as a mechanism to formally verify the soundness of a

microarchitectural model with respect to RTL. Such soundness verification helps

engineers develop accurate formal models of existing processor implementations.

• Scalable Automated Hardware MCM Verification: This dissertation

enables scalable automated MCM verification of detailed hardware designs for

the first time. Prior work on automated microarchitectural MCM verification

used monolithic approaches that do not scale due to the NP-completeness of

the SMT solvers used. However, hardware designs inherently possess large

amounts of structural modularity and hierarchy, and my work (RealityCheck)

exploits these features to enable specification and verification of a hardware

design piece-by-piece. This allows for scalable verification by breaking up a

processor’s MCM verification into smaller verification problems. In the process,

my work also enables modular ordering specifications for hardware designs. Such

specifications are an excellent fit for the distributed nature of the hardware

design process, where a number of teams each design one or a few components

and then connect them together to create the overall processor.

21

• Automated All-Program Microarchitectural MCM Verification: This

dissertation is the first to enable automatic proofs of the MCM correctness of

hardware designs across all programs. Prior automated microarchitectural MCM

verification approaches conducted bounded verification, which only guaranteed

design correctness for a subset of all programs. In contrast, my work (PipeProof)

develops the first microarchitectural MCM verification approach capable of auto-

matically verifying MCM correctness across all programs. This gives designers

complete confidence that there are no MCM bugs in their design, while retaining

the ease of verification characteristic of automated approaches.

• Progressive Automated Formal Verification: This dissertation proposes

Progressive Automated Formal Verification, a novel generic verification flow

with multiple benefits. Prior formal verification approaches focused on one

point in development, like early-stage design or post-implementation verification.

In contrast, progressive verification emphasises the use of automated formal

verification at multiple points in the development timeline and the linkage of the

different verification approaches to each other. Progressive verification enables

the earlier detection of bugs and provides reductions in verification overhead

and overall development time. In addition, the combination of the PipeProof,

RealityCheck, and RTLCheck tools developed by this dissertation enables the

progressive verification of MCM properties in parallel processors. This concrete

instance of a progressive verification flow serves as a reference point for future

work on the progressive verification of other types of properties and systems.

• Bringing Automated MCM Verification Closer to Real-World Pro-

cessors: The work in this dissertation advances automated formal MCM verific-

ation much closer to being capable of verifying the designs and implementations

of real-world processors. Individually, each of the tools in this dissertation

22

makes its own contribution in this regard. RTLCheck enables automated MCM

verification of real processor implementations for the first time. RealityCheck’s

twin benefits of scalability and distributed specification are both critical to

the verification of real-world designs, while PipeProof brings the coverage of

automated MCM verification approaches up to the level required for real-world

processors. In addition, when the three tools are combined in a progressive veri-

fication flow, they enable thorough and efficient MCM verification across much

of the hardware development timeline. This thorough progressive verification

is essential to ensure the MCM correctness of real-world processors that are

shipped to end users.

1.6 Outline

The rest of this dissertation is organised as follows. Chapter 2 provides background

information necessary to understand this dissertation, as well as a survey of the

relevant related work on formal MCM specification and verification. Chapter 3 details

RTLCheck, a methodology and tool for formally checking the soundness of hardware

ordering specifications with respect to their RTL implementations. The work in

Chapter 3 also doubles as a method to link microarchitectural MCM verification to

established RTL verification procedures. Chapter 4 covers RealityCheck, a methodo-

logy and tool for achieving scalable automated MCM verification of hardware designs

through modularity. Chapter 5 explains PipeProof, a methodology and tool for con-

ducting automated MCM verification of hardware designs across all programs rather

than just litmus tests. Chapter 6 details the philosophy of Progressive Automated

Formal Verification and its attributes, and illustrates how the work in Chapters 3,

4, and 5 achieves progressive verification of MCM properties for hardware designs.

Chapters 3, 4, and 5 contain quantitative evaluations of their methodologies on one

23

or more case studies each. Chapter 7 wraps up the dissertation, providing a brief

retrospective on the work presented, outlining avenues for future work, and stating

the conclusions of the dissertation.

24

Chapter 2

Background and Related Work

The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,...

—J.R.R. Tolkien
The Lord of the Rings

The work in this dissertation makes significant advances in automated formal

MCM verification of hardware. The background information in this chapter provides

an introductory overview of MCM verification research. Each section also cites the

relevant related work for the topic under discussion.

Section 2.1 covers MCMs for hardware ISAs, including the relationship between

microarchitectural features and the choice of ISA-level MCM. Section 2.2 provides

an overview of the formal verification approaches relevant to this dissertation, with

a focus on model checking. Section 2.3 covers prior work and approaches for formal

MCM specification and verification, apart from the PipeCheck work [LPM14,LSMB16].

PipeCheck is a starting point for much of the work in this dissertation, and thus is

covered in detail in Section 2.4. The chapter concludes with a summary (Section 2.5).

25

Core 0 Core 1

(i1) [x] ← 1 (i3) [y] ← 1

(i2) r1 ← [y] (i4) r2 ← [x]

SC forbids r1=0, r2=0

Figure 2.1: Code for litmus test sb

Core 0 Core 1

(i1) [x] ← 1 (i3) r1 ← [y]

(i2) [y] ← 1 (i4) r2 ← [x]

SC forbids r1=1, r2=0

Figure 2.2: Code for litmus test mp

2.1 Memory Consistency Model (MCM) Back-

ground

2.1.1 Litmus Tests

To illustrate or verify MCM properties, computer architects, programmers, and

researchers often use small 4-8 instruction programs called litmus tests, and this

dissertation follows suit. MCM scenarios of interest can almost always be expressed

by such small tests. In a litmus test, the initial values of all memory addresses are

assumed to be 0 by convention. Litmus tests are usually designed so that one of

their outcomes (i.e. one set of values for their loads) is forbidden by the MCM under

consideration. A given litmus test also often corresponds to some hardware or compiler

feature that affects MCM behaviour. In this dissertation (and often in the literature),

a reference to a litmus test refers to the forbidden outcome of that litmus test unless

otherwise specified.

The sb (store buffering) program in Figure 2.1 is an example of a litmus test. It

is essentially the synchronization algorithm from Section 1.2 reduced to its minimal

form. To briefly reiterate the explanation of this program from Section 1.2, cores 0

and 1 each write 1 to addresses x and y respectively, and then read the value of the

address written by the other core. If no reordering or buffering of memory operations

26

occurs, then it is impossible for both loads (i3 and i4) to return 0. Thus, the outcome

r1=0,r2=0 is forbidden under SC.

However, on most processors today (including all commercial ones), the outcome

r1=0,r2=0 is allowed and in fact observable if the test were to be run on the processor.

The reason for this is that most processors today have per-core store buffers. As

discussed in Section 1.2, the use of per-core store buffers results in stores being

reordered with subsequent loads from the point of view of other cores, allowing both

loads i3 and i4 to return 0.

Another litmus test used repeatedly in this dissertation is the “message passing”

or mp litmus test (Figure 2.2). In mp, core 0 writes to a data address x and then to a

flag y to indicate that the data is ready. Core 1 reads the value of the flag y (to check

whether the data in x is valid) and then reads the value of the data x. Under SC, it is

forbidden for the load of y to return 1 while the load of x returns 0. In other words,

SC forbids core 1 to see the update of the flag y without also observing the update to

the data x.

Litmus tests have been used for MCM analysis for decades, even in Lamport’s

original sequential consistency paper [Lam79]. However, the term “litmus test” for

such minimal program examples is somewhat more recent [OSS09]. Litmus tests are

widely used in the literature to illustrate specific MCM scenarios, as sb does above

for the microarchitectural feature of store buffering. They are widely used throughout

this dissertation for the same function. Litmus tests can be used for bug-finding

in MCM implementations through dynamic analysis (Section 2.3.5). They are also

often used to dynamically validate formal ISA-level MCM specifications during their

creation, if the processor exists prior to the creation of the formal MCM specification

(Section 2.3.1). Litmus tests can also be formally analysed to determine whether

they are allowed or forbidden under a given ISA-level MCM [AMT14, SSA+11], a

27

programming language MCM [BOS+11a,BDW16], or a microarchitectural ordering

specification [LPM14,LSMB16].

Litmus tests can be generated in a number of ways, including by hand (like sb above)

or through random generation [diy12]. Schemes for generating better suites of litmus

tests have also been developed [AMSS10,MHAM11,LWPG17]. One automated litmus

test synthesis tool [LWPG17] can, when given a formal MCM specification, generate

all litmus tests (up to a bounded number of instructions) for that MCM that satisfy

a minimality criterion. The minimality criterion requires that no synchronization

mechanism in the test can be weakened without causing new behaviours to become

observable. As a result, the generated tests provide excellent coverage of MCM corner

cases.

A number of ISA-level MCMs can be differentiated from each other by using a set

number of litmus tests [MHAM11]. However, it is still an open question as to whether

the verification of a microarchitecture’s MCM correctness across all programs can be

reduced to the verification of its MCM correctness for a set number of litmus tests.

Chapter 5 shows how to sidestep this problem and prove microarchitectural MCM

correctness across all programs without using litmus tests at all.

2.1.2 Speculative Implementations of MCMs

As Section 1.2 covers, today’s microarchitectures are at odds with an intuitive MCM

like SC. Microarchitectural features like out-of-order execution and coalescing store

buffers can easily cause SC violations. (Appendix A details various microarchitectural

features that can affect MCM behaviour, including litmus test examples.) One way to

keep using microarchitectural features that break SC is to implement them speculatively.

In other words, the hardware attempts to reorder memory accesses but makes sure to

check if any other core can observe the reordering. This can happen if another core is

accessing the same address as one of the speculatively reordered accesses during the

28

speculation, and at least one of the two accesses to that address is a write. Such an

occurrence is known as a conflict. For example, in the mp litmus test (Figure 2.2), if

core 0 speculatively reordered the stores i1 and i2 to addresses x and y, then this

reordering could potentially conflict with the loads i3 and i4 to y and x on core

1. If the speculating core conflicts with another core, one or both1 cores roll back

the execution of their speculatively reordered accesses and attempt to execute them

again. The processor’s coherence protocol (Section A.5) is frequently used to detect

conflicts, as it keeps track of which cores have access to which data. As long as there

are relatively few conflicts, the hardware will be able to reorder the memory accesses

most of the time and gain the associated performance benefits, while still appearing

to implement SC for any assembly language program.

There has been much work on speculatively reordering memory operations while

implementing a strong MCM. Hill [Hil98] argues that multiprocessors should support

SC because the additional performance benefits of weak MCMs over the speculative

execution of SC do not outweigh the counterintuitive outcomes and lower programmab-

ility of weak MCMs. Gharachorloo et al. [GGH91] proposed two speculative techniques

for improving performance under any MCM. The techniques were speculative exe-

cution of future loads and non-binding prefetches2 for future accesses before their

execution became legal. Ranganathan et al. [RPA97] allowed speculative commits

of loads and later instructions before outstanding stores, and used a history buffer

to recover from consistency violations. Gniady et al. [GFV99] allowed both loads

and stores to bypass each other speculatively, and also used a history buffer to aid in

recovery from consistency violations. BulkSC [CTMT07] speculatively implements SC

by dynamically grouping sets of consecutive instructions into chunks that appear to

execute atomically and in isolation. This enables the reordering and overlapping of

memory access within chunks and across chunks. A chunk which conflicts with another

1Each core may be speculatively reordering its own memory operations at the same time.
2Data fetched by a non-binding prefetch may be invalidated before it can be used.

29

chunk leads to one of them being rolled back and re-executed. InvisiFence [BMW09]

can speculatively implement MCMs with low storage requirements and without the

global arbitration for chunk commits that BulkSC requires.

Transactional Memory (TM) [HM93] enables assembly language programs to define

transactions (analogous to database transactions) that either commit as a single atomic

unit or abort and do not write any data. Hardware keeps track of conflicts between

transactions, allowing them to commit or requiring that they abort as necessary.

Transactions on different cores may overlap with each other, and are only ordered

with respect to each other if they conflict. This improves memory throughput, while

also making lock-free synchronization3 mechanisms easy and efficient to use. Later

speculative approaches like BulkSC are similar to TM in that they commit memory

operations in sets rather than one at a time. However, a key difference between the two

is that in TM the programmer defines the size of the transactions, while in approaches

like BulkSC the size of the chunks is determined by the hardware. Transactional

memory saw much subsequent research over the years, including implementations in

software and hardware. Harris et al. [HLR10] provides an overview of research in this

area.

While speculative implementations of MCMs can achieve the performance benefits

of weak MCMs while presenting a strong MCM to the programmer, they also incur

substantial additional hardware complexity to keep track of the speculation. This can

make such designs more prone to bugs, as was the case for Intel’s recent implementation

of transactional memory in its processors [Hac14, Int20]. Furthermore, speculatively

executing memory operations before it is valid to do so under the processor’s MCM can

also lead to side-channel attacks [TLM18b]. Rather than adopting a purely speculative

approach, manufacturers of commercial processors have instead chosen instead to

3Lock-free data structures can be accessed without locks or mutexes, i.e., they are thread-safe.

30

MCM
Relax
W→R

Relax
W→W

Relax
R→R

Relax
R→W

WA Safety Nets

TSO
[SPA92,
OSS09]

X rMCA
RMWs and MFENCE on
x86

PC
[Goo89]

X nMCA RMWs

PSO
[SPA92]

X X rMCA
RMWs and STBAR

fence
RMO
[SPA94]

X X X X rMCA MEMBAR fences

Power
[SSA+11,
AMT14]

X X X X nMCA
Fences including sync

and lwsync

ARMv7
[AMT14]

X X X X nMCA dmb and other fences

ARMv8
[PFD+18]

X X X X rMCA
dmb and other fences,
plus ldar and stlr

RISC-V
[RIS19]

X X X X rMCA
FENCE instruction and
optional AMOs

WO
[AH90]

X X X X rMCA
synchronization in-
structions and RMWs

RCsc
[GLL+90]

X X X X rMCA
release and acquire in-
structions and RMWs

RCpc
[GLL+90]

X X X X nMCA
release and acquire in-
structions and RMWs

Table 2.1: Summary of Weak MCMs. The write atomicity (WA) abbreviations are
explained in Section 2.1.3. RMWs are read-modify-write instructions.

Core 0 Core 1

(i1) [x] ← 1 (i4) [y] ← 1

(i2) MFENCE (i5) MFENCE

(i3) r1 ← [y] (i6) r2 ← [x]

TSO forbids r1=0, r2=0

Figure 2.3: Code for x86-TSO litmus test sb+fences

implement weak or relaxed MCMs that allow some behaviours forbidden by SC. The

next section discusses such MCMs.

31

Core 0 Core 1 Core 2

(i1) [x] ← 1 (i2) r1 ← [x] (i5) r2 ← [y]

(i3) <fence> (i6) <fence >

(i4) [y] ← 1 (i7) r3 ← [x]

Cumulative fence i3 forbids r1=1, r2=1, r3=0

Figure 2.4: Code for litmus test wrc+fences

2.1.3 Weak/Relaxed MCMs

Most processors today (including all commercial ones) have chosen to implement weak

or relaxed MCMs that do not require one or more of the orderings required by SC. This

enables architects to utilise microarchitectural features such as those in Appendix A

and have them be programmer-visible. Programmer-visible relaxations fall into two

main categories: relaxations of program order and relaxations of write atomicity.

Program order relaxations relax the ordering between certain pairs of memory

instructions in a program. For instance, a weak MCM may relax Store→Store ordering,

allowing store instructions to be reordered with subsequent stores in the program. This

would allow a processor to perform i1 and i2 out of order in mp (Figure 2.2), resulting

in the outcome r1=1,r2=0 (which is forbidden under SC) becoming observable.

Meanwhile, relaxations of write atomicity dictate whether a store must be observed

by every core in the system at the same (logical) time. A store is multi-copy-

atomic [Col92] (referred to as MCA in this dissertation) if it becomes visible to all

cores in the system at the same time. Some weak MCMs may allow a core to “read

its own write early”, in which case a store can become visible to the writing core

before it becomes visible to all other cores. In this case, the store must become

visible to all cores other than the writing core at the same time. This variant of write

atomicity is referred to as rMCA in this dissertation. Finally, other weak MCMs may

allow a store to become visible to cores other than the writing core at different times.

This is known as “non-multi-copy-atomicity”, and is referred to as nMCA in this

32

dissertation. (Section A.4 explains write atomicity in detail, including some of the

hardware optimizations enabled by allowing such relaxations.)

Architectures that have weak MCMs provide one or more “safety net” instruc-

tions [AG96] in their ISA that can be used to enforce ordering between relaxed memory

operations where necessary (for instance, in synchronization code). These are generally

one of two types: (i) fences and (ii) release and acquire instructions. Fences order

instructions preceding the fence before those after it. Release and acquire instructions

are special store and load operations (respectively) that enforce ordering with respect

to other memory operations. They are conceptually analogous to lock releases and

acquires in parallel programs.

Table 2.1 summarises the major characteristics of various well-known weak MCMs

for general-purpose processors. This table draws from the table of MCMs in Adve

and Gharachorloo [AG96] while incorporating changes since that work was published.

I now provide a brief overview of these MCMs.

Weak MCMs Used in Commercial Processors

TSO (Total Store Order) [OSS09] is the MCM of Intel and AMD x86 processors as

well as certain SPARC processors. TSO relaxes Store→Load ordering and implements

rMCA write atomicity, but preserves all other orderings. Under x86, programmers

can add an MFENCE between a store and a load to enforce ordering between them

where necessary. For example, one can forbid the execution of sb where r1=0,r2=0 by

adding MFENCEs between each pair of instructions, as in Figure 2.3. Programmers can

also use read-modify-write instructions (RMWs) to enforce ordering between stores

and loads [AG96]. PC (Processor Consistency) [Goo89] also relaxes Store→Load

ordering but implements the weaker nMCA write atomicity. It preserves all other

orderings, and programmers can enforce ordering through RMWs where necessary.

33

PSO (Partial Store Ordering) [SPA92] was developed by SPARC, and relaxes

both Store→Load and Store→Store ordering. It implements rMCA write atomicity.

Programmers can use the STBAR fence and RMWs to enforce ordering where necessary.

RMO (Relaxed Memory Order) [SPA94] was also developed by SPARC, and relaxes

program order between all Load and Store pairs. It provides MEMBAR fences to enforce

ordering where needed.

IBM Power processors implement one of the weakest MCMs. The Power MCM

relaxes all program orders for accesses to different addresses, and also implements

weaker nMCA write atomicity. Programmers can enforce ordering where necessary

using a number of fences, including the sync and lwsync fences. The MCM of

ARMv7 processors is very close to that of Power, also relaxing all program orders and

implementing nMCA. It also uses fences to enforce ordering, the most common of

which is the dmb fence. Alglave et al. [AMT14] discuss differences between the Power

and ARMv7 MCMs.

For ARMv8, the subsequent iteration of the ARM ISA, ARM strengthened the

MCM of its processors, making them implement rMCA. They also added the release and

acquire instructions stlr and ldar (explained below) to give programmers the option

of synchronizing using these instructions. The RISC-V MCM is very close to that of

ARMv8; it also relaxes all program orders and implements rMCA. RISC-V includes a

FENCE instruction to enforce ordering between memory operations where necessary.

RISC-V also has an optional “A” (Atomic) ISA extension that includes release-acquire

RMW operations (called AMOs). (Note that “the RISC-V MCM” here refers to the

ratified RISC-V MCM which fixes the issues identified by TriCheck [TML+17].)

Weak Ordering and Release Consistency

Release and acquire instructions were first introduced in the RC (Release Consist-

ency) [GLL+90] and Weak Ordering (WO) [DSB86,AH90] MCMs. On architectures

34

Core 0 Core 1

(i1) [x] ← 1 (i4) r1
acq←−− [y]

(i2) [y]
rel←−− 1 (i5) r2 ← [x]

(i3) [x] ← 2

RC forbids r1=1, r2=0

Figure 2.5: Code for an RC (release consistency) variant of mp where i2 is a release

(denoted by
rel←−) and i4 is an acquire (denoted by

acq←−−).

that support them, release and acquire operations provide an alternative to fences for

inter-core synchronization under weak MCMs. Releases and acquires allow program-

mers to specify which memory accesses are used for synchronization. The remaining

accesses are considered to be data accesses. Consistency only needs to be enforced

at synchronization points between cores, so the hardware can leverage the labelling

of synchronization reads and writes to complete data reads and writes faster [AH90].

RC and WO operate on the same principles; this section utilises RC’s terminology to

explain their workings.

Acquire and release operations are conceptually analogous to acquire and release

operations on a lock used to enforce mutual exclusion for a shared resource in a parallel

program. In parallel programs that share data, a thread generally acquires a lock,

operates on the shared data protected by the lock in its critical section, and then

releases the lock. The critical section is guaranteed to occur between the lock and

unlock. In a similar vein, acquire operations are loads, and must be ordered before

all accesses after the acquire in program order. Meanwhile, release operations are

stores, and must be ordered after all accesses before the release in program order.

If an acquire observes the write of a release operation, it must observe all accesses

preceding that release, enabling synchronization between threads. Read-modify-write

instructions can be labelled as both acquires and releases [GLL+90]. Under the RCsc

variant of RC, releases and acquires are required to be sequentially consistent with each

other, while under RCpc, releases and acquires must obey PC (processor consistency)

with respect to each other. RCpc is thus weaker than RCsc.

35

For an example of using acquires and releases under RC, consider Figure 2.5’s

variant of the mp litmus test. Under RC4, if all instructions in the test were data

accesses, the outcome r1=1,r2=0 would be allowed as RC relaxes all program orders

and no synchronization instructions have been used. However, since i2 is labelled as

a release and i4 is labelled as an acquire, the outcome r1=1,r2=0 becomes forbidden.

The release i2 ensures that i1 is ordered before i2, while the acquire i4 ensures that

i4 is ordered before i5. Thus, when the acquire i4 observes the release i2, the data

accesses before i2 (like i1) are ordered before the data accesses after i4 (like i5).

Thus, if i4 returns 1, then i5 is guaranteed to see the store i1 to x, forbidding the

outcome r1=1,r2=0.

Release and acquire operations are different from fences in that they are one-way

barriers. Fences ensure that memory operations preceding the fence are ordered before

memory operations after the fence. However, acquires and releases only enforce order

on one set of memory operations with respect to themselves. Acquires order succeeding

accesses, while releases order preceding accesses. Thus, accesses after a release are free

to be reordered with the release, and accesses before an acquire are free to be ordered

with respect to the acquire. For example, in Figure 2.5, i3 is free to be reordered with

the release i2. This is known as roach-motel movement5, and intuitively corresponds

to making a critical section larger [BA08]. Roach-motel movement is beneficial as it

allows some reordering of memory operations across barriers while not affecting the

correctness guarantees of acquire and release operations.

The SC-for-DRF Guarantee

Application and systems software programmers would much prefer to reason about

their programs under the intuitive model of SC, as programming under weak MCMs is

4The reasoning for this litmus test applies to both RCsc and RCpc.
5The term arises from a cockroach trapping product named “Roach Motel” [Man07]. Cockroaches

can enter the trap but they cannot exit it. Similarly, under roach-motel movement, memory accesses
can enter a critical section but cannot exit it.

36

very difficult. However, programmers cannot restrict themselves to SC hardware as all

commercial processors implement weak MCMs. The SC-for-DRF guarantee6 [AH90,

GLL+90] solves this problem. It states that if programmers include a certain amount

of synchronization in their program—specifically, enough synchronization to eliminate

all data races7 in the program’s SC executions—then it will behave as if it were running

on a sequentially consistent system, even if the underlying processor implements a

weak MCM (assuming it does so correctly). Thus, programmers can reason about their

program under SC, while also reaping the performance benefits of weak MCMs. The

SC-for-DRF guarantee also forms the basis for the MCMs of high-level programming

languages.

Despite its importance, the SC-for-DRF guarantee is not a silver bullet for MCM

issues in parallel systems. A parallel system that purports to obey the SC-for-DRF

guarantee will only restrict itself to SC behaviours for DRF programs if the hardware

obeys its MCM. Buggy hardware will still cause incorrect executions regardless of

whether the program has data races or not, necessitating MCM verification research

such as the work in this dissertation.

Summary

This section and Table 2.1 provide a high-level overview of weak MCMs today. The

details of such MCMs can be much more nuanced, as Section 2.1.4 shows. To enable

more comprehensive MCM specification and verification, the past decade has seen

much work on developing and formalising the specifications of these weak ISA-level

MCMs (Section 2.3.1).

6This guarantee was also shown as part of the properly-labelled approach of Gharachorloo et
al. [GLL+90].

7Intuitively speaking, a race in an execution consists of two accesses (at least one of which
is a write) running on different cores/threads which access the same address and which have no
synchronization accesses occurring between them [SHW11]. A data race is a race where at least one
of the accesses is to data, rather than for synchronization.

37

Core 0 Core 1

(i1) [x] ← 1 (i4) r1 ← [y]

(i2) dmb <ctrlisb>

(i3) [y] ← 1 (i5) r2 ← [x]

ARMv7 forbids: r1=1, r2=0

Figure 2.6: Code for ARMv7 litmus test mp+dmb+ctrlisb. In the above code,
“<ctrlisb>” represents an instruction sequence comprising a control dependency (Sec-
tion A.3) followed by an isb fence. Such an instruction sequence is sufficient to enforce
local ordering between two load instructions on ARMv7.

Core 0 Core 1

(i1) [x] ← 1 (i4) r1 ← [y]

(i2) dmb (i5) [y] ← 2

(i3) [y] ← 1 (i6) r2 ← [y]

<ctrlisb>

(i7) r3 ← [x]

ARMv7 observable: r1=1, r2=2, r3=0

Figure 2.7: Code for ARMv7 litmus test mp+dmb+fri-rfi-ctrlisb, which demon-
strates a highly counterintuitive MCM outcome. This behaviour was observed on
an ARMv7 processor and considered desirable by architects [AMT14], despite the
similar mp+dmb+ctrlisb test (Figure 2.6) being forbidden. Once again, “<ctrlisb>”
represents an instruction sequence comprising a control dependency (Section A.3)
followed by an isb fence.

2.1.4 The Need for Formal MCM Specification and Verifica-

tion

Hardware features can combine to create counterintuitive MCM outcomes in numerous

ways. Architects may desire to allow such outcomes for performance reasons or forbid

them to enhance programmability. Therefore, unambiguous specifications for ISA-level

MCMs are necessary to clearly define which outcomes are allowed and which are

forbidden. Likewise, stringent verification methods are also necessary to ensure that

hardware respects its MCM specification.

Consider Figure 2.6’s ARMv7 litmus test mp+dmb+ctrlisb, which is forbidden

on ARMv7. The dmb fence enforces that all cores observe the store to x (i1) before

38

the store to y (i3), while the ctrlisb8 on core 1 enforces that the loads i4 and i5

execute in order. The combination of these orderings make it impossible for core 1 to

observe the write to y before the write to x (i.e. for the outcome r1=1,r2=0) to occur.

Now consider Figure 2.7’s variant of this test, called mp+dmb+fri-rfi-ctrlisb.

Here, i1 and i3 are still ordered by a dmb. The loads to y (i4) and x (i7) are still

separated by a ctrlisb, with an additional write to and read from y in between i4

and the ctrlisb. Since ARMv7 preserves program order for accesses to the same

address, one would expect that i4 would still be ordered before i7, which would

make the outcome r1=1, r2=1, r3=0 forbidden. However, this outcome was in fact

observable on ARMv7 hardware [AMT14], and the corresponding architects even

considered it desirable behaviour. An intuitive explanation of why the outcome is

observable is as follows. At the start of execution, core 1 can observe that i5 and i6

are a store and load to the same address that are next to each other in program order.

Thus, it should be allowed for the load i6 to read from the store i5 (i.e., for r2=2).

Critically, this can be done before i4 is executed, as i4’s result no longer affects the

result of i6 (since i6 reads from i5, which is after i4 in program order). Once i6

has executed, i7 is free to execute as doing so will not break the dependency between

i6 and i7. Thus, i7 can now read the initial value of 0 for x (r3=0). Finally, i1 and

i2 can be stored in order, and observed by core 1, allowing i4 to return r1=1.

The above example is just one of the numerous ways in which hardware features

and optimizations can combine to generate counterintuitive outcomes due to MCM

issues. Simply stating whether a few litmus tests are allowed or forbidden is not

sufficient to specify the MCM behaviour of a parallel system. As seen above, even

relatively small changes to a forbidden litmus test can unexpectedly cause it to become

observable. A formal specification (i.e. one written in some form of mathematical logic)

8ctrlisb represents an instruction sequence comprising a control dependency (Section A.3)
followed by an isb fence. Such an instruction sequence is sufficient to enforce local ordering between
two load operations on ARMv7.

39

of the MCM of a parallel system is necessary to comprehensively and unambiguously

define which MCM behaviours are allowed and which are forbidden. Once the system’s

MCM is formally specified, any litmus test can be formally evaluated against it to

conclusively determine whether it is allowed or forbidden.

Similarly, formal verification is critical to ensure that hardware and software respect

their MCMs. As Section 1.3 covered, today’s multiprocessors are nondeterministic,

meaning that even if one run of a litmus test on a parallel system satisfies the MCM

requirements of the system, another run of the same test may violate the system’s

MCM. Formal verification of the parallel system for the litmus test can cover all

possible executions of the litmus test, and is necessary to ensure that the system will

always run the litmus test correctly. Furthermore, a system must respect its MCM for

all programs, of which there are an infinite number. It is impossible to explicitly test

each possible program on a system, so formal verification is necessary to ensure that a

system correctly implements its MCM across all programs.

A number of MCM bugs have been found in parallel systems in recent years [Hac14,

Int20,AMT14,ARM11,ABD+15,SD16,TML+17], further highlighting the necessity of

formal MCM verification. The work in this dissertation also discovers a real-world

MCM bug in open-source Verilog (Chapter 3). This adds further weight to the

argument for formal MCM verification and showcases the efficacy of the work in this

dissertation.

The next section covers the basics of formal verification, with a focus on model

checking (the verification approach on which the work in this dissertation is based).

Sections 2.3 and 2.4 then cover prior work on formal MCM specification and verification,

including necessary background on such work.

40

2.2 Formal Verification Background

The overarching idea behind formal verification is to represent a hardware and/or

software system using a mathematical model, and then prove the correctness of the

model for a mathematically specified property. The proof may use mathematical

techniques like induction, or it may simply comprehensively check all possible cases of

the model for the property under verification. Formal verification can provide strong

correctness guarantees because it is based on mathematical proofs. For instance,

formal verification of a multicore hardware design can prove that a litmus test will

never be observable on the design, even though the hardware is nondeterministic.

Section 2.2.1 covers model checking, which is the automated formal verification

method underlying the work in this dissertation. Other related work on MCM

verification involves the manual writing of proofs in proof assistants, which are

discussed in Section 2.2.2. Finally, Section 2.2.3 covers the two major modelling styles

for formal MCM specifications: operational and axiomatic, each of which has their

own benefits and drawbacks.

2.2.1 Model Checking

Model checking is a formal verification technique that explores all possible states

of a system to check whether it satisfies a certain property [CE81, BK08]. If the

system does not satisfy the property, model checking returns a counterexample: an

execution of the system that does not satisfy the property. All the work presented in

this dissertation utilises model-checking based approaches to conduct verification.

Model checking requires a logic-based representation of the system being verified as

well as the property to verify on that system. This is traditionally done using transition

systems and temporal logic respectively. Model checking may explicitly search through

the states of a system to see if a property holds (explicit-state model checking). Model

41

State S2

A, B, C

State S1

B

set

unset

Figure 2.8: Pedagogical transition system with two states S1 and S2. Each state is
annotated with the atomic propositions that are true in that state.

checking can also be conducted using techniques based on Binary Decision Diagrams

(BDDs) [BCM+92] and Boolean satisfiability (SAT) solvers [BCCZ99] (symbolic model

checking), which can have significant performance benefits over explicit-state model

checking. Finally, Satisfiability Modulo Theories (SMT) solvers [BSST09] build on

SAT-based model checking to enable the specification of systems and properties

using more expressive theories. This has benefits in terms of both expressiveness and

performance over standard SAT-based model checking. All the work in this dissertation

utilises SAT or SMT-based model checking approaches to conduct verification.

Specifying Systems and Properties [BK08]

In model checking, the system being verified is traditionally represented as a state

machine or transition system. A transition system is a tuple (S,Act,→, I, AP, L)

where

• S is a set of states

• Act is a set of actions

• →⊆ S × Act × S is a transition relation. It links each state Si with the next

state that the system will transition to if a given action is taken while in Si.

• I ⊆ S is a set of initial states

42

• AP is a set of atomic propositions (i.e. Boolean variables)

• L : S → 2AP is a labelling function that when passed a given state, returns the

set of atomic propositions that are true in that state

Figure 2.8 shows an example pedagogical transition system. This system has two

states. The left state S1 is the initial state (indicated by a → leading into it with

no source), where atomic propositions A and C are false, and B is true. This state

can transition to the state S2 on the right using the set action. In S2, A, B, and C

are all true. S2 can transition to S1 using the unset action. A state in a transition

system is terminal if it has no state that it can transition to. (A state is not terminal

even if it can only transition to itself.) Parallel reactive9 systems are best modelled by

transition systems without terminal states [BK08], and the discussion of transition

systems in this dissertation is restricted to such transition systems.

In a transition system without terminal states, a path is an infinite state sequence

s0s1s2... such that s0 ∈ I (i.e. s0 is an initial state) and si ∈ Post(si−1)10 for all i > 0.

A trace of a path π = s0s1s2... is L(s0)L(s1)L(s2)... and is denoted by trace(π). In

other words, the trace is the sequence of sets of atomic propositions that are valid in

the states of the path.

The property to verify on the system is traditionally specified in temporal logic, a

logic which extends propositional logic with capabilities for referring to the behaviour

of a system over time. For instance, temporal logic allows properties like “P is always

true on every trace” and “Q will eventually be true on every trace” to be easily stated.

There are a number of different temporal logics, including LTL (Linear Temporal

Logic) [Pnu77], CTL (Computation Tree Logic) [CE81], and CTL* [EL87]. LTL forms

9A reactive system is one which is repeatedly prompted by the outside world and whose role is to
continuously respond to external inputs [HP89]. A processor can be thought of as a reactive system;
the instructions it is given to execute constitute some of its external inputs.

10Post(s) is the set of states that s can transition to.

43

the basis for the SystemVerilog Assertions used by the work in Chapter 3, and is

explained in detail in Section 3.4.1.

The system and property for a given model checking problem may also be rep-

resented in other ways, such as through a set of axioms (invariants) that the system

respects. herd (Section 2.3.1) and PipeCheck (Section 2.4) are examples of such

axiomatic modelling frameworks. See Section 2.2.3 for a comparison of axiomatic

models to operational models (which use transition systems) for formal MCM analysis.

Axiomatic models are used for the majority of the work in this dissertation.

Explicit State Model Checking [BK08]

Model checking may be conducted by explicitly searching through the states of a

transition system to determine whether it implements a temporal logic property. As

a simple pedagogical example, consider verifying the property “A is always false”

on the transition system in Figure 2.8. A verification procedure could check such a

property by conducting a depth-first search of the transition system’s state graph

from each initial state, and searching for a state where A is true. (In a transition

system’s state graph, the successors of a given state are the possible states that it

can transition to.) The search would start at the initial state S1, where A is false as

required. Then the search would check the successors of S1, namely state S2. A is

true in S2, violating the property, and so the procedure would return a trace starting

with s0s1 as a counterexample. On the other hand, if verifying the property “B is

always true” on the same transition system, a search would first check S1 and then

S2, and find that B is true in both states. Since there are no more states to examine,

the search would return that the property holds.

Generally speaking, explicit-state model checking of temporal logic properties is

somewhat more complicated, requiring acceptance checks for Büchi automata, a partic-

ular type of finite-state machine [BK08]. Section 3.4.1 provides a detailed explanation

44

of explicit-state model checking for general LTL properties, as the algorithm for doing

so is relevant to the RTLCheck work in Chapter 3.

Symbolic Model Checking [BK18]

In contrast to explicit-state methods, model checking may also be conducted symbolic-

ally through BDDs and SAT solvers. The JasperGold verifier used by the RTLCheck

work in Chapter 3 utilises BDD and SAT-based model checking approaches [Cad16].

Furthermore, SAT-based model checking forms the basis for SMT-based model check-

ing (discussed after this section), which is the verification method used by the majority

of the work in this dissertation. This section focuses on SAT-based model checking,

as the details of BDD-based model checking are not relevant to the work presented in

this dissertation.

Symbolic model checking represents the state sets and transition relation of a

transition system using expressions in a symbolic logic like propositional logic. This

can dramatically reduce the size of the data structures for representing state sets, and

can potentially result in order-of-magnitude improvements in verification perform-

ance [CHV18].

SAT solvers can be used to conduct bounded model checking (BMC) [BCCZ99].

In BMC, a symbolic representation of a transition system and a property are jointly

unwound (i.e. instantiated) for k steps, giving a formula that is satisfiable if and only

if there is a counterexample to the property that has length k. This formula is then

passed to a SAT solver. If the solver returns that the formula is unsatisfiable, no

counterexamples of length k exist. On the other hand, if the solver finds a satisfying

assignment, that assignment corresponds to a counterexample of length k.

45

SMT Solver

SAT
Solver

Theory
Solver(s)

B(F)

F is Unsat

Formula F
Boolean

Abstraction

Unsat

Sat. Asst. A
Inverse
Boolean

Abstraction

B-1(A)

Add ~A

Sat
F is Sat

Unsat

Figure 2.9: Block diagram of an SMT (Satisfiability Modulo Theories) solver, adapted
from Gupta [Gup17] with some visual presentation changes.

For example, if searching for counterexamples of length k to a property “p is always

true on every trace” using BMC, the verification of the property can be encoded as

follows11:

∃s0, ..., sk.I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧

(
k∨

i=0

¬p(si)

)
(2.1)

Bounded verification such as this can provide guarantees that a system satisfies

a property for all executions of length up to and including some bound k. By itself,

BMC cannot provide unbounded verification, i.e., a guarantee that there exist no

counterexamples to the property of any length. However, BMC can use inductive

techniques, Craig interpolation, and other techniques to achieve unbounded (i.e.

complete) verification [BK18].

The methodologies and tools presented in this dissertation all conduct bounded

verification except for PipeProof (Chapter 5), which conducts unbounded verification.

Model Checking Using SMT [BSST09,BT18]

Model checking using SMT (Satisfiability Modulo Theories) solvers is the verification

method used by Chapters 4 and 5 of this dissertation. It builds on SAT-based model

checking by adding the ability to express properties and systems using various theories,

which provide improvements in expressibility and verification performance.

11p(si) denotes whether p holds in state si.

46

Propositional logic is capable of efficiently specifying a variety of properties. How-

ever, certain types of properties are more naturally and compactly specified in other

forms of logic. Consider for instance the following pedagogical set of constraints:

(x = 5) ∧ ((y = x+ 3) ∨ (y = x− 2)) ∧ (y = 2x) (2.2)

This formula does not naturally map to propositional logic because its individual

atoms are not Boolean variables, but linear equations with algebraic variables and

values. However, it can be modelled through the combination of propositional logic

and an additional logical theory. For instance, the Linear Integer Arithmetic (LIA)

theory can reason about linear arithmetic over integers, and it can be used to help

create a model for the above formula. Such models can be verified using SMT: the

combination of a SAT solver with solvers for one or more logical theories.

Figure 2.9 shows a block diagram of the basic version of an SMT solver. To solve an

SMT formula, the individual atoms corresponding to theory formulae are abstracted

by Boolean variables, resulting in a normal SAT formula. This SAT formula is then

solved by the SAT solver inside the SMT solver. If the SAT formula is unsatisfiable,

then the SMT formula it abstractly represents is unsatisfiable too. On the other hand,

the SAT solver may find a satisfying assignment for the SAT formula. In this case,

the SMT solver needs to check that the assignment is also valid under the theories

being used. The abstract Boolean variables in the assignment are translated back

into the relevant theory formulae, and the theory solvers check that they represent a

valid assignment in the relevant theories. If they do, then the overall SMT formula

is satisfiable. Otherwise, the theory solvers notify the SAT solver that the satisfying

assignment it found is invalid, and the SAT solver attempts to find another satisfying

assignment to the abstracted formula.

For example, consider trying to check the satisfiability of Formula 2.2. We can

abstract x = 5 by M , y = x + 3 by N , y = x − 2 by P , and y = 2x by Q, giving

47

us M ∧ (N ∨ P) ∧ Q. The SAT solver will return a satisfying assignment such as

M ∧N ∧Q. M , N , and Q are then translated back into their corresponding equations,

and the LIA theory solver is asked to check whether (x = 5) ∧ (y = x+ 3) ∧ (y = 2x)

can be true. It is clearly impossible to satisfy these constraints (y cannot be both

10 and 8), so the LIA solver informs the SAT solver that its satisfying assignment is

invalid, and asks it to find another. The SAT solver then returns M ∧P ∧Q, which is

equal to (x = 5)∧ (y = x− 2)∧ (y = 2x), which is also impossible for the theory solver

to satisfy. The SAT solver is then asked to find yet another satisfying assignment, but

no other satisfying assignment exists. Thus, the SMT solver returns that the overall

formula is unsatisfiable.

2.2.2 Interactive Proof Assistants

A proof assistant is a tool that aids users in writing proofs of theorems that they can

specify in the proof assistant. It keeps track of what techniques have been used in the

proof and what remains to be proven. Most importantly, though, the proof assistant is

capable of verifying whether the user’s proof does indeed prove the theorem it purports

to, using an approach based on programming language type checking [Chl13]. This

allows users of proof assistants to ensure that their proof of a system’s correctness

does in fact prove that the system is correct.

Prior work has developed approaches that enable hardware and software to be

written in such proof assistants. Users can then prove the correctness of this hardware

and software using the proof assistant, and then automatically extract a verified

implementation from the proof assistant. Kami [CVS+17] is an example of such a

flow. (Kami is discussed further in Section 2.3.4.) However, writing proofs in proof

assistants requires formal methods expertise and can require significant manual effort,

creating a high barrier to entry. As a result, the usage of proof assistants is not as

amenable to use by typical hardware and software engineers as approaches like model

48

checking. A number of proof assistants exist, including Coq [Coq04], Isabelle [Isa20],

and Lean [Lea20].

2.2.3 Operational and Axiomatic Models

There are two major modelling styles for formal hardware and software MCM spe-

cifications, namely operational and axiomatic models. Models like the transition

system in the example of Section 2.2.1 are known as operational models. They

are defined as state machines, and when used to model hardware, they often re-

semble the machine that they model. An operational model explicitly describes its

allowed behaviours through its states and the possible transitions among them. In

recent years, prior work has used operational models to model hardware for MCM

analysis [VCAD15,CVS+17,SSA+11,GKM+15,FGP+16,FSP+17,PFD+18,WBBD15].

Axiomatic models, meanwhile, do not specify systems as state machines. Instead,

they specify certain invariants of the system (i.e., things that are always true in

the system) that constrain the executions of the model in some way. Axiomatic

specifications thus implicitly describe the allowed behaviours of a system by stating

the constraints that the system respects. The allowed executions of the model consist

of any execution that satisfies these constraints. Axiomatic models defined in the

herd format (Section 2.3.1) are the de-facto standard for specifying ISA-level MCMs

today [AMT14]. Mador-Haim et al. [MHMS+12] also previously defined an axiomatic

MCM specification for the Power ISA. PipeCheck [LPM14, LSMB16] (Section 2.4)

developed a way to axiomatically specify microarchitectural MCM orderings on which

this dissertation builds.

Axiomatic models may be single-event axiomatic or multi-event axiomatic. Alglave

et al. [AMT14] define single-event axiomatic MCM specifications as those that use

a single event to denote the propagation of a store operation to other cores/threads.

Conversely, they define multi-event axiomatic specifications as those that use multiple

49

events to denote the propagation of a store to other cores/threads. herd ISA-level

MCM specifications (Section 2.3.1) are examples of single-event axiomatic models.

Meanwhile, PipeCheck microarchitectural ordering specifications (Section 2.4) are

examples of multi-event axiomatic specifications.

Operational and axiomatic models each have their own advantages and disadvant-

ages. Operational models can be more intuitive than axiomatic ones as they tend to

resemble the systems that they model, and they do not require users to come up with

invariants of the system to write its model. On the other hand, axiomatic specifications

are generally more concise than operational ones [AMT14]. More importantly, as prior

work [MHAM10, AKT13, AKNT13, AMT14] shows, the verification performance of

axiomatic models can be faster than when using operational models, sometimes by

orders of magnitude. To get the best of both worlds, researchers today may define

both operational and axiomatic models for the same system and then formally prove

the equivalence of the two models [OSS09,MHMS+12,AMT14,PFD+18].

The rest of this chapter covers necessary background and prior work on formal

MCM specification and verification. The prior work covered includes research that

uses operational models as well as that which uses axiomatic models. The work in

this dissertation primarily uses axiomatic models, although the work in Chapter 3

requires the translation of axiomatic properties to RTL properties that are evaluated

over an operational model (i.e. the RTL).

2.3 MCM Specification and Verification

This section covers necessary background and related work on MCM specification

and verification apart from the PipeCheck work [LPM14,LSMB16], which Section 2.4

discusses in detail.

50

[x] ← 1

fr

[y] ← 1

r1 ← [y]

r2 ← [x]

rf
po po

(i4)

(i3)(i1)

(i2)

Figure 2.10: ISA-level execution of mp forbidden under SC due to the cycle in the po,
rf , and fr relations.

2.3.1 Instruction Set (ISA) Memory Consistency Models

The execution of a parallel program on a processor can be modelled at the ISA level

(i.e. assembly language level) as a graph, where the nodes are instructions, and edges

between nodes represent ISA-level MCM attributes.

ISA-level MCMs can then axiomatically define whether executions are allowed or

forbidden based on whether they show certain patterns of relations or not.

Modelling and reasoning about the MCM correctness of executions using the

notion of relations between instructions in an execution was first introduced by Shasha

and Snir [SS88] for SC. herd (developed by Alglave et al. [AMT14]), a widely used

framework for specifying and conducting formal analysis of ISA-level MCMs today

also models ISA-level MCMs axiomatically using relations. Each individual relation

between a pair of instructions in an execution represents some ordering relevant to

the MCM.

Figure 2.10 shows the ISA-level execution for the outcome of mp from Figure 2.2.

The po relation represents program order, so i1
po−→ i2 and i3

po−→ i4 represent that i1 is

before i2 and i3 is before i4 in program order. The rf (reads-from) relation links each

store to all loads which read from that store. For example, i2
rf−→ i3 represents that i3

reads its value from i2 in this execution. The fr (from-reads) edge between i4 and i1

enforces that the store that i4 reads from comes before the store i1 in coherence order

(a total order on same-address writes in an execution). The co relation (not present

51

in Figure 2.10) is used to represent coherence order (Section A.5). Other ISA-level

MCMs require extra relations to model reorderings and fences [AMT14].

In the relational framework of Alglave et al. [AMT14], the permitted behaviours of

the ISA-level MCM are defined in terms of the irreflexivity, acyclicity, or emptiness of

certain relational patterns. For example, SC can be defined using relational modelling

as acyclic(po∪ co∪ rf ∪ fr). This means that any execution with a cycle in these four

relations is forbidden. The execution in Figure 2.10 contains such a cycle, and so is

forbidden under SC, as one would expect for mp. herd can evaluate a given litmus

test against such an axiomatically specified ISA-level MCM and return whether or

not a given outcome of the litmus test is allowed or forbidden under that MCM. This

dissertation utilises herd-style axiomatic specifications for ISA-level MCMs, most

notably in Chapter 5. The work in Chapter 4 also makes use of such specifications to

decide whether a given litmus test should be allowed or forbidden by hardware.

The past decade or so has seen the creation of formal axiomatic ISA-level MCM spe-

cifications for SC, x86-TSO [OSS09], Power [MHMS+12,AMT14], ARMv8 [PFD+18],

and RISC-V [RIS19]. Researchers created the formal MCM specifications of TSO,

Power, and ARM by discussing the workings of such processors with architects from

those companies as well as through dynamic litmus test-based validation (Section 2.3.5)

of existing processors implementing those ISAs. Formal ISA-level MCM specifications

created through this process closely resemble the behaviour of the processors they

model. However, these specifications are not formally verified as being sound with

respect to real hardware. This can potentially lead to false negatives, as Section 1.4

covers.

The formal RISC-V MCM specification is somewhat of an exception to the above

process, as it was created before a large number of RISC-V chips were taped out.

TriCheck [TML+17] was a spur for the creation of this formal specification, as it

uncovered severe issues in a draft specification of the RISC-V MCM. This led to an

52

effort (of which I was a part) to create a formal RISC-V MCM specification that fixes

these issues. The effort was successful, and the new RISC-V MCM has since been

ratified [RIS19].

Other schemes for generating formal MCM specifications also exist. The MemSynth

tool [BT17] takes as input a set of litmus test results for a processor and a partially

completed MCM specification. It then synthesizes a formal MCM specification for

the processor that is guaranteed to respect the litmus test results provided as input.

Operational models consisting of abstract machines that model hardware MCM

behaviour can also function as MCM specifications, though by their nature they are

somewhat intertwined with the hardware implementations that they model. They are

covered in Section 2.3.3.

In addition to specifying the MCMs of general-purpose multicore processors,

there has been work on formally specifying the MCMs of GPUs [ABD+15,WBSC17,

WBBD15, LSG19]. There has also been research on incorporating related hard-

ware features like mixed-size accesses12 [FSP+17], transactional memory [CSW18]

(Section 2.1.2), and virtual memory [RLS10, LSMB16, HTM20] into formal MCM

specifications.

2.3.2 Program Verification Under MCMs

As Section 1.3 states, this dissertation focuses on verification of MCM implementations

(i.e. hardware and language implementation software like compilers). It does not

focus on program verification (the verification of programs against their high-level

specifications) under various MCMs. Nevertheless, there has been a considerable

amount of work on program verification under various MCMs. Much of this work

utilises stateless model checking, a variant of model checking that does not explicitly

store states in memory [God97]. CDSChecker [ND13] and CDSSpec [OD17] enable

12Mixed-size accesses refer to the interaction between multiple memory accesses of different widths,
e.g. a 32-bit store and an 8-bit store that overlap in memory.

53

the exhaustive exploration of all possible behaviours of concurrent data structure

code under the C11 memory model, and verification of these data structures against

CDSSpec specifications. Nidhugg [AAA+15,AAJL16,AAJ+19] is capable of conducting

stateless model checking for assembly language programs under the SC, TSO, PSO, and

Power MCMs. RCMC [KLSV17] enables stateless model checking of C/C++ programs

under a more recent revision of the C11 memory model [LVK+17]. GenMC [KRV19] is

a stateless model checking algorithm that can be used for verifying clients of concurrent

libraries, and is parametric in its choice of MCM. Most recently, HMC [KV20] enables

stateless model checking of assembly language programs under a wide variety of

hardware MCMs, and is faster than Nidhugg.

2.3.3 Hardware Ordering Specifications

The complicated MCM behaviour of commercial processors like those of Power and

ARM can be difficult to characterise and understand. To better understand and analyse

processors like these, researchers have developed detailed operational models of these

processors through dynamic litmus test analysis of the processors (Section 2.3.5)

and/or discussion with the architects who created them. These models can evaluate

small programs (like litmus tests, but sometimes slightly larger) to determine which

of their outcomes should be allowed or forbidden under the processor represented by

the model. Some of these models have undergone multiple revisions to incorporate

additional detail into the models or to adapt to a revision of the processor’s ISA-level

MCM. The Power and ARMv7 MCMs are quite similar to each other (Section 2.1.3),

and so sometimes the same model (possibly with a small number of changes) is used

for both Power and ARMv7.

Sarkar et al. [SSA+11] developed an operational model for the MCM behaviour

of Power multiprocessors, and suggested that it might be applicable to ARMv7 with

minor changes. Alglave et al. [AMT14] also created an operational model for Power

54

MCM behaviour, which they proved equivalent to their axiomatic herd model for the

Power MCM. Gray et al. [GKM+15] extended the model of Sarkar et al. [SSA+11]

and integrated it with an ISA model for part of the Power instruction set, while

Flur et al. [FGP+16] constructed a similar integrated concurrency and ISA model

for ARMv8. The detailed concurrency model of Flur et al. [FGP+16] was known as

the “Flowing model”. Flur et al. [FSP+17] extended the Flowing model of ARMv8

and the Power model of Gray et al. to handle mixed-size accesses. Most recently,

Pulte et al. [PFD+18] developed operational and axiomatic models for ARMv8 that

accounted for the ARMv8 MCM’s change to implement rMCA write atomicity as

opposed to nMCA (Section A.4), and proved the equivalence of these operational

and axiomatic models. The operational model of Pulte et al. is a simplification of

the Flowing model, and supports mixed-size accesses. Wickerson et al. [WBBD15]

developed an operational model of GPU hardware which was capable of implementing

the OpenCL programming framework extended with AMD’s remote-scope promotion

technology [OCY+15]. Their model included the syntax and semantics of a minimal

assembly language for their hardware model.

Each of these models is a detailed representation of the behaviours of the processors

that it models. However, they are only models of specific types of processors, e.g. an

ARMv8 model only represents ARMv8 processors. These models are not part of a

generic framework specialised for describing and verifying hardware orderings. This is

in contrast to the PipeCheck (Section 2.4) framework, which defines a domain-specific

language (µspec) for hardware orderings, and supports the verification of any processor

whose orderings are specified in µspec for suites of litmus tests.

55

2.3.4 Manually Proving MCM Correctness of Hardware Im-

plementations

There are two main frameworks for specifying hardware and formally verifying its

MCM guarantees: PipeCheck [LPM14,LSMB16] and Kami [VCAD15,CVS+17]. This

section describes Kami, while Section 2.4 describes PipeCheck.

Kami enables hardware designers to write their hardware in the Coq proof as-

sistant, prove its correctness, and then extract a hardware implementation from this

proven-correct hardware written in Coq. In the first paper on what became Kami,

Vijayaraghavan et al. [VCAD15] formalised the idea of components in a hardware

design such as reorder buffers (ROB), register files, store buffers, and caches as labelled

transition systems (LTSes). They provided a machine-checked proof in Coq that if the

models of the individual components obey certain rules, then the combined system

implements sequential consistency for all programs. Kami thus enabled the modular

MCM verification of models of hardware.

The Bluespec hardware description language enables users to write hardware as

a set of rules, and the hardware then behaves as if each of the rules were executed

atomically, with a scheduler automatically choosing the order in which they are

executed. LTS semantics are quite close to those of the Bluespec, and in some cases

can be transliterated directly to Bluespec. However, the work of Vijayaraghavan et

al. [VCAD15] only proved correctness of a model of the processor rather than its

actual implementation. It also lacked an automated process to extract a Bluespec

hardware implementation from its proven-correct model in Coq. More recently, Choi

et al. [CVS+17] extended the work of Vijayaraghavan et al. to create Kami. Kami

enabled users to modularly prove the correctness of hardware itself, rather than a

model. Kami also included an automated process for extracting a Bluespec hardware

implementation from its proven-correct Coq model.

56

While Kami can prove hardware MCM correctness across all programs, its proofs

require formal methods expertise and significant manual effort. This is because Kami

requires such proofs to be written in the Coq proof assistant. Kami also can currently

only prove correct hardware written in Bluespec’s rule-based style, rather than Verilog

(which is much more common). Furthermore, Kami has thus far only proven that

hardware designs implement SC [VCAD15,CVS+17], rather than demonstrating how

to handle weak MCMs in such a framework.

The work in this dissertation is capable of automatically verifying the MCM

correctness of hardware RTL for litmus tests (Chapter 3), and is also able to automat-

ically prove the MCM correctness of hardware designs across all possible programs

(Chapter 5). Furthermore, Chapter 4 shows how to automatically conduct modular

bounded MCM verification of hardware designs. This dissertation thus shows that

the use of automated verification does not preclude the sorts of guarantees that Kami

provides in its proofs.

2.3.5 Dynamic MCM Verification

Dynamic MCM verification observes the behaviour of a processor as it runs and flags

MCM violations that occur. Dynamic verification using litmus tests consists of running

litmus tests on a parallel system and checking if any of the litmus test’s outcomes

that are forbidden by the system’s MCM are observable. To increase the probability

of bug discovery, a large number of different tests can be used, the tests can be run

a large number of times, and various techniques can be used to stress the parallel

system in order to expose weak (i.e. non-SC) behaviours [AMSS11,SD16]. Dynamic

verification may also use a runtime approach, where it tracks all instructions as the

processor executes them and reports any MCM violations that occur [MS09,CMP08].

TSOTool [HVML04] runs psuedo-randomly generated programs with conflicting

accesses on a processor that claims to implement TSO, and compares their results

57

to TSO requirements. The algorithm checking results against TSO requirements

runs in polynomial time. litmus [AMSS11] runs litmus tests for many iterations

against hardware to find interesting behaviour. It includes techniques to make such

behaviour appear more frequently. DVMC [MS09] conducts dynamic MCM verification

at runtime. It tracks instructions as the processor executes them, and checks that

the processor maintains invariants sufficient to implement the MCM for the executed

instructions, reporting any invariant violations that occur. DVMC has the benefit

of also being able to detect physical (circuit-level) errors that lead to MCM failures,

and supports the SC, TSO, PSO, and RMO consistency models (Section 2.1.3). Chen

et al. [CMP08] also conduct runtime dynamic MCM verification, but verify MCM

behaviour through analysis of a constraint graph, which reduces the number of false

positives when compared to DVMC. Like DVMC, their work can also detect physical

errors that lead to MCM failures.

Nevertheless, dynamic verification can never guarantee the absence of MCM

bugs in hardware. This is because it only verifies executions actually observed on

a processor (if using runtime verification) or observed executions of litmus tests (if

dynamically running litmus tests). There is always the chance that the system contains

an MCM bug that does not occur in the observed executions, limiting the correctness

guarantees that such tools can provide. Furthermore, such approaches require a

runnable implementation to exist in order to work, in contrast to approaches like

Kami (Section 2.3.4) or PipeCheck (Section 2.4).

2.4 Automated Formal Microarchitectural MCM

Verification with PipeCheck

A large amount of prior MCM verification only verified hardware using dynamic

approaches or simply assumed that hardware was correct. There was no way for

58

computer architects and hardware engineers to formally verify their hardware designs

against ISA-level MCMs for correctness. PipeCheck [LPM14, LSMB16] filled this

verification gap by enabling the automated formal verification of microarchitectural

ordering specifications against their ISA-level MCMs for suites of litmus tests. Notably,

PipeCheck’s verification can be conducted long before RTL is written. The automated

nature of PipeCheck’s verification makes it amenable to use by computer architects

and hardware engineers. This is in contrast to tools like Kami (Section 2.3.4), which

are difficult for individuals without formal methods expertise to use.

PipeCheck involves three main components: the µhb (microarchitectural happens-

before) graph formalism for modelling microarchitectural executions, the µspec domain-

specific language for specifying a design’s microarchitectural orderings, and an al-

gorithm that uses µhb graphs for model checking the executions of a litmus test on a

design whose orderings are specified in µspec.13 This section explains each of these in

turn, followed by a summary of PipeCheck’s deficiencies (each of which are addressed

by this dissertation).

2.4.1 Microarchitectural Happens-Before (µhb) Graphs

PipeCheck’s verification requires it to model and reason about the ordering of events

in the executions of litmus tests on hardware designs. To do so, PipeCheck developed

a formalism of µhb (microarchitectural happens-before) graphs, where a given µhb

graph represents a microarchitectural execution. Nodes in these graphs represent

microarchitectural events in the execution of an instruction. These can represent

events such as an instruction reaching a particular pipeline stage, as well as other

types of microarchitectural events. CCICheck [MLPM15] subsequently added the

13Recall that in this dissertation, the term “PipeCheck” refers to the current incarnation of the
PipeCheck approach as realised in its follow-on work COATCheck [LSMB16]. Of PipeCheck’s three
components, the µhb graph formalism was developed in the initial PipeCheck paper [LPM14], while
the µspec domain-specific language and the model checking algorithm described in this section were
developed as part of COATCheck.

59

Memory Hierarchy

WB

EX

IF

WB

EX

IF

basicSC microarchitecture

Core 0 Core 1

(a) The basicSC microarchitecture, where
both cores have 3-stage in-order pipelines
of Fetch (IF), Execute (EX), and Write-
back (WB) stages.

(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po

(b) µhb graph for mp’s forbidden outcome
on basicSC.

Figure 2.11: Example µhb graph for the mp litmus test and example µspec axiom.

capability to model cache occupancy and coherence protocol events in µhb graphs

through its ViCL (Value in Cache Lifetime) abstraction.

Edges in µhb graphs represent happens-before relationships between nodes. So an

edge between nodes A and B in a µhb graph would indicate that event A happens

before event B in the execution modelled by the µhb graph. The edge does not make

any claims on the duration of time between A and B, only that A happens before

B in the execution. The set of edges in a µhb graph is closed under transitivity. In

other words, if a µhb graph contains edges from A to B and from B to C, then it also

includes an edge from A to C by transitivity. µhb edges implied by transitivity are

not shown in the µhb graphs in this dissertation for the sake of readability.

Figure 2.11b shows an example µhb graph for the execution of mp’s non-SC outcome

(r1=1,r2=0) on the microarchitecture of Figure 2.11a (henceforth called basicSC),

which aims to implement SC. Above the µhb graph is the corresponding ISA-level

cycle in po ∪ co ∪ rf ∪ fr (also seen in Figure 2.10), showing that SC requires this

execution to be forbidden.

Each column in the µhb graph represents an instruction flowing through the

pipeline, and each node represents a particular event in the execution of an instruction.

60

In basicSC, each core has three-stage in-order pipelines of Fetch (IF), Execute (EX),

and Writeback (WB) stages. There are thus three µhb nodes for each instruction,

denoting when it reaches the IF, EX, and WB stages.14 For instance, the leftmost node

in the second row represents instruction i1 at its Execute stage, while the second

node in the second row represents instruction i2 at its Execute stage. The blue edge

between these two nodes enforces that they pass through the Execute stage in order,

as required by the in-order pipeline. Other blue edges between the Fetch stages and

between the Writeback stages of instructions on the same core similarly enforce the

in-order nature of basicSC’s other pipeline stages. The colouring of edges is purely

for readability purposes; all µhb edges are of equal strength for PipeCheck’s formal

analysis. This is in contrast to ISA-level MCM specifications (Section 2.3.1) where

edges are treated differently depending on their type.

Other edges in Figure 2.11b’s µhb graph represent other ordering relationships

that the designer stipulates for the implementation. For example, in order for i4 to

return a value of 0 for its load of x, it must complete its Execute stage before the

store of x in i1 reaches its Writeback stage and goes to memory, thus overwriting the

old value of 0 for x. This ordering is represented by the red edge from i4’s EX node to

i1’s WB node in Figure 2.11b. Likewise, in order for i3’s load of y to read a value of

1 in its EX stage, it must occur after the store of y in i2 reaches the WB stage. This

ordering is shown by a red edge between those two nodes.

If a µhb graph contains a cycle, then for any node D that is part of that cycle, the

transitivity of µhb edges implies that D must happen before itself. This is impossible,

and thus a cyclic µhb graph represents an execution that is unobservable on the target

microarchitecture. Likewise, an acyclic µhb graph represents an execution that is

observable on the target microarchitecture. A topological sort of an acyclic µhb graph

14Note that the organisation of the µhb graph into rows and columns is purely for readability
purposes; the only events and orderings modelled by a µhb graph are those denoted by its nodes and
edges.

61

Axiom "IF_FIFO":

forall microops "a1", "a2",

(SameCore a1 a2 /\ ~SameMicroop a1 a2) =>

EdgeExists((a1,Fetch), (a2,Fetch)) =>

EdgeExists((a1,Execute), (a2,Execute)).

Figure 2.12: µspec axiom expressing that the Fetch pipeline stage should be FIFO on
basicSC.

is a trace of an execution modelled by that µhb graph. The graph in Figure 2.11b is

cyclic (the cycle is comprised of the two red edges and the blue edges that connect

them), so this microarchitectural execution is unobservable, as SC requires for mp.

2.4.2 The µspec Domain-Specific Language

PipeCheck developed the µspec domain-specific language to specify the orderings

enforced by a given microarchitecture. A µspec specification of a microarchitecture

allows PipeCheck to decide which nodes and edges must be present in that microar-

chitecture’s µhb graphs. A µspec specification consists of a set of axioms, each of

which specifies a property that must hold for every µhb graph on that microarchi-

tecture.15 These axioms each correspond to one of the smaller orderings enforced by

the microarchitecture, so a set of µspec axioms constitutes a design description of

microarchitectural orderings. PipeCheck verifies whether the combination of these

individual axioms is enough to enforce the system’s MCM for a given litmus test.

Figure 2.12 shows an example µspec axiom which enforces that the Fetch pipeline

stage is FIFO on basicSC. The axiom applies to all pairs of instructions a1 and

a2 in the litmus test being verified that are on the same core (SameCore a1 a2)

where a1 and a2 are distinct instructions (~SameMicroop a1 a2). For such pairs of

instructions, if an edge exists between their Fetch stages (as denoted by the first

EdgeExists predicate), then an edge must also exist between their Execute stages

15A µspec axiom can thus be thought of as an invariant for the ordering behaviour of the
microarchitecture.

62

〈microarch spec〉 ::= 〈axiom list〉

〈axiom list〉 ::= 〈axiom list〉 〈axiom〉
| 〈axiom〉

〈axiom〉 ::= 〈formula〉

〈formula〉 ::= ‘forall microop’ 〈microop id〉‘,’ 〈formula〉
| ‘exists microop’ 〈microop id〉‘,’ 〈formula〉
| 〈formula〉 ∧ 〈formula〉
| formula ∨ formula
| ∼ formula
| 〈predicate〉

〈predicate〉 ::= 〈microop predicate〉
| 〈graph predicate〉

〈graph predicate〉 ::= ‘NodeExists’
| ‘NodesExist’
| ‘EdgeExists’
| ‘EdgesExist’

Figure 2.13: The core grammar of the µspec domain-specific language for specifying
microarchitectural orderings [Lus15]. A microop is a single load, store, or synchroniz-
ation (e.g., fence) operation. 〈microop predicate〉 refers to a predicate whose result
is the same for every µhb graph for a given litmus test and microarchitecture, like
SameCore a1 a2. 〈graph predicate〉 refers to a predicate whose value may change
depending on which µhb graph of a litmus test and microarchitecture it is evaluated
for.

(signified by the second EdgeExists predicate) to satisfy the axiom. In the case of the

µhb graph in Figure 2.11b for mp on basicSC, i1 and i2 constitute a pair of distinct

instructions on the same core with an edge between their Fetch stages. The axiom

thus adds an edge between their Execute stages to make the EdgeExists predicate

which refers to the Execute stage true. Instructions i3 and i4 also satisfy the axiom’s

conditions on a1 and a2, and so an edge is added between their Execute stages as

well.

The µspec language is based on propositional logic but includes support for

quantifiers over instructions and the transitivity of µhb edges. Figure 2.13 details

63

the core grammar of the µspec language. The building blocks of µspec are its

built-in predicates, which can be divided into two types. Graph predicates are

predicates that reason about the nodes and edges in µhb graphs (〈graph predicate〉

in Figure 2.13). Meanwhile, microop predicates are predicates that reason about the

microops (individual loads, stores, or synchronization instructions like fences) whose

events are present in the µhb graph (〈microop predicate〉 in Figure 2.13). µspec’s

graph predicates are NodeExists, NodesExist, EdgeExists, and EdgesExist, which

correspondingly take µhb nodes and edges as parameters. Meanwhile, an example of

a µspec microop predicate is SameCore a1 a2 from Figure 2.12, which returns true

if and only if the microops a1 and a2 are on the same core for the program being

modelled.

The value of a graph predicate may change depending on what nodes and edges are

present in a µhb graph, but the value of a microop predicate will be the same for every

µhb graph for a particular microarchitecture and litmus test. For instance, if evaluating

Figure 2.12’s SameCore a1 a2 predicate where i and j are i1 and i2 from mp, this

predicate will always be true no matter what nodes and edges are in the µhb graph

it is evaluated for. On the other hand, if evaluating the EdgeExists((a1,Execute),

(a2,Execute)) predicate from Figure 2.12, it will return true or false depending on

whether or not the edge between the Execute stages exists in the µhb graph that the

predicate is evaluated for.

Lustig’s dissertation [Lus15] provides further details on µspec.

2.4.3 Automatically Verifying Correctness of a Litmus Test

There are usually multiple µhb graphs for a given litmus test outcome and µspec

specification, each corresponding to different microarchitectural executions and event

orderings. For instance, if modelling executions of mp’s non-SC outcome (r1=1,r2=0)

on a typical processor, the load i3 may read its value from the cache in one execution

64

Test Outcome
≥ 1 Acyclic Graph
(Observable)

No Acyclic Graphs
(Unobservable)

Allowed OK OK (Strict)
Forbidden MCM violation OK

Table 2.2: Summary of how PipeCheck interprets SMT solver output to verify a given
litmus test.

and from main memory in another execution. The µhb graphs for these two executions

would be different.

For a given litmus test outcome to be observable on a microarchitecture, there

must exist an acyclic µhb graph for that litmus test outcome which satisfies all the

µspec axioms in the microarchitecture’s ordering specification. A search for such an

acyclic µhb graph can be converted into a query to an SMT solver as outlined here.

First, each µspec axiom is instantiated for the litmus test being verified. This is done

by grounding µspec’s forall and exists quantifiers. forall quantifiers are turned

into ANDs over the litmus test instructions, and exists quantifiers are turned into

ORs over the litmus test instructions. For example, if verifying mp, the quantifier

forall microop "j", <formula> would be translated as follows. Four instances of

<formula> would be ANDed together, and in each instance of <formula> j would be

replaced with one of i1, i2, i3, and i4 from mp, with each instruction being used for

only one instance of <formula>.

Next, all microop predicates are evaluated according to the litmus test outcome

being verified. Since the value of a microop predicate for a particular litmus test

outcome is independent of the µhb graph it is evaluated over, they can be directly

evaluated to true or false before the query is passed to an SMT solver. Once this is

done, each simplified axiom consists solely of graph predicates combined with AND

(∧), OR (∨), and NOT (∼). The combination of these axioms is then passed to the

SMT solver as a formula to solve.

65

An assignment to the graph predicates in the formula passed to the SMT solver

describes a µhb graph. For instance, if the predicate EdgeExists((a1,Fetch),

(a2,Fetch)) is true in the assignment, then that edge exists in the graph that

the assignment describes. Likewise, if the predicate is false, the edge does not exist

in the graph. If an assignment to the graph predicates exists which satisfies all the

axioms (i.e. a satisfying assignment), and the µhb graph described by that assignment

is acyclic, then the litmus test outcome is observable on the microarchitecture. If the

formula passed to the solver is unsatisfiable without making the µhb graph cyclic (i.e.

unsatisfiable modulo the transitivity of µhb edges), then the litmus test outcome is

guaranteed to be unobservable on the microarchitecture.

PipeCheck uses a custom SMT solver to search for an acyclic µhb graph to

verify whether a microarchitecture correctly respects its MCM for a given litmus test.

Table 2.2 covers the four possible cases for PipeCheck’s litmus test verification. If

a litmus test outcome is forbidden, and PipeCheck’s solver cannot find an acyclic

µhb graph satisfying the microarchitecture’s µspec axioms for that outcome, then the

outcome is unobservable on the microarchitecture as required. On the other hand, if

PipeCheck’s solver does find an acyclic µhb graph satisfying the microarchitecture’s

µspec axioms for a forbidden outcome, then the microarchitecture is buggy. The

acyclic µhb graph found by PipeCheck is provided to the user as a counterexample

for that litmus test outcome.

If a litmus test is allowed, the user would expect PipeCheck to find an acyclic µhb

graph indicating that the outcome is microarchitecturally observable. Even if no acyclic

µhb graph can be found for an allowed test, it just means that the microarchitecture

is overly strict and forbidding more behaviours than its MCM deems necessary.

PipeCheck uses a custom SMT solver written in Gallina (the functional program-

ming language of Coq), the language in which PipeCheck is implemented. It explicitly

keeps track of the µhb graph represented by variable assignments that the solver is

66

considering so as to check the graph’s cyclicity. Standard SMT solvers like Z3 [dMB08]

are also capable of conducting the analysis done by PipeCheck’s solver. The Linear

Integer Arithmetic (LIA) theory of such SMT solvers can be used to check graph

cyclicity. This is a well-known technique and is used by the RealityCheck work from

Chapter 4, as Section 4.6.4 describes.

2.4.4 Moving Beyond PipeCheck

PipeCheck was a large stride forward in the field of hardware MCM verification.

Nevertheless, as stated in Section 1.4 (and summarised below), PipeCheck has a

number of shortcomings that limit its effectiveness in verifying real-world processors.

Firstly, PipeCheck provides no way to link its verification to that of RTL. This prevents

verification of the soundness of a µspec specification with respect to pre-existing RTL

(if RTL was written first). It also prevents verification that RTL matches a pre-existing

µspec specification (if the µspec was written first, as recommended for progressive

verification (Chapter 6)). Secondly, PipeCheck verifies a microarchitecture for a litmus

test all at once. This is intuitive because enforcing the MCM is a responsibility

of the entire microarchitecture. However, it also means that once the design gets

past a certain level of detail, PipeCheck’s verification will not scale due to the NP-

completeness of the SMT solver it uses. Thirdly, a hardware design must respect

its MCM across all possible programs to ensure correct parallel system operation.

However, PipeCheck can only verify a single litmus test at a time. The question of

whether verifying the MCM correctness of a microarchitecture across all programs

can be reduced to verifying its MCM correctness for a particular suite of litmus tests

is still an open problem. As a result, PipeCheck cannot guarantee microarchitectural

MCM correctness across all programs.

This dissertation addresses each of the above challenges. RTLCheck (Chapter 3)

addresses the issue of verifying µspec model soundness and linking to RTL verification.

67

RealityCheck (Chapter 4) addresses the problem of scalable microarchitectural MCM

verification. PipeProof (Chapter 5) addresses the problem of conducting microarchi-

tectural MCM verification across all possible programs.

2.5 Summary

Common hardware and software optimizations that were developed in the single-core

era result in violations of sequential consistency in multicore systems. Rather than forgo

these optimizations, hardware and software manufacturers have embraced weak/relaxed

MCMs that allow them. (Some hardware optimizations may also be implemented

speculatively.) These weak MCMs introduce substantial additional system complexity,

both for their specification and for the verification of their implementations.

In response to this complexity, there has been a large amount of work on MCMs and

their verification, especially over the past decade. While much of this work is extremely

valuable, a number of unresolved challenges in hardware MCM verification remain

unaddressed by prior work. Firstly, prior ISA-level MCM specifications and PipeCheck

microarchitectural models are not formally verified as being sound with respect to the

real hardware that they model. This is problematic because verification using unsound

models can miss bugs (i.e., false negatives). Secondly, the monolithic MCM verification

conducted by approaches like PipeCheck cannot scale to detailed models of large

designs, such as those of commercial processors. This is because the SMT solvers used

by such approaches are NP-complete. Thirdly, no prior automated approach provides

hardware MCM verification across all programs. This is problematic because hardware

MCM verification must cover all possible programs to ensure correctness. However,

the only instances of prior work capable of proving hardware MCM correctness across

all programs are manual approaches like Kami. This dissertation addresses each of

these challenges, beginning with the issue of soundness verification in Chapter 3.

68

Chapter 3

Checking Soundness and Linking

to RTL Verification1

Fools dwelling in darkness, but thinking themselves
wise and erudite, go round and round, by various
tortuous paths, like the blind led by the blind.

—Katha Upanishad
(tr. Swami Nikhilananda)

MCM verification is critical to parallel system correctness, including that of parallel

hardware. In response, prior work developed formal specification frameworks for ISA-

level MCMs (herd) and microarchitectural orderings (µspec), as well as model checking

algorithms for verifying the correctness of such specifications for suites of litmus tests.

However, these specifications were never formally linked to processor implementations

written in RTL like Verilog. This has two disadvantages. Firstly, if creating a formal

specification for an existing processor, it prevents engineers from verifying that the

specification is a sound representation of the underlying hardware. Secondly, if creating

a formal specification for a processor whose RTL does not yet exist, the lack of such

linkage prevents the verification of the eventual RTL for compliance with the formal

specification.

1An earlier version of the work in this chapter was previously published and presented by myself
at the MICRO-50 conference [MLMP17]. I was the first author on the publication.

69

Both of these verification tasks require a method for translating formal hard-

ware specifications to equivalent RTL properties. To this end, this chapter presents

RTLCheck, a methodology and tool for the automatic translation (given appropriate

mapping functions) of µspec axioms to equivalent SystemVerilog Assertions [IEE13] (a

well-known language for formally specifying RTL properties) for suites of litmus tests.

These SystemVerilog assertions can be formally proven on an RTL implementation

by commercial tools such as Cadence JasperGold [Cad15b]. This chapter details

RTLCheck’s methodology, including the technical challenges involved in the transla-

tion, and presents quantitative results from evaluating RTLCheck on the Multi-V-scale

processor, a multicore version of the open-source RISC-V V-scale processor [RIS15].

3.1 Introduction

Verifying that hardware correctly implements its MCM is increasingly critical given

its fundamental importance (Section 1.3). System verification is a general challenge,

with verification costs now dominating total hardware design cost [Fos15]. MCM

verification is particularly challenging since it requires analysis across many possible

interleavings of events.

In response to the need for formal hardware MCM analysis and verification, prior

work developed the herd framework [AMT14] for formal analysis and specification of

ISA-level MCMs (Section 2.3.1) and the PipeCheck framework [LPM14,LSMB16] for

specification and litmus test-based verification of microarchitectural orderings against

ISA-level MCMs (Section 2.4). Both herd and PipeCheck significantly improved the

state of the art in hardware MCM analysis and verification, but neither of them was

formally linked to real processor implementations written in RTL like Verilog. herd

specifications are only validated against real hardware through dynamic testing and

70

consultation with architects. Similarly, PipeCheck specifications are written based on

the user’s understanding of the microarchitecture being modelled.

This disconnection of formal hardware ordering specifications from RTL makes it

difficult to ensure the MCM correctness of real-world processors. The precise nature

of the difficulty depends on whether the specification is written before or after the

RTL. This chapter focuses on connecting PipeCheck µspec models to RTL, but in

combination with PipeProof (Chapter 5), it also accomplishes the formal linkage of

herd ISA-level MCM specifications to RTL.

If creating a µspec model for an existing processor, the RTL exists prior to the µspec.

In this case, there is a need to verify that the µspec model is a sound representation

of the processor. If a model of the processor is sound, then a proof of the model’s

correctness implies the correctness of the actual processor. An unsound model will

allow a correctness proof to be completed even if the real processor is buggy (i.e., false

negatives), which will lead to bugs slipping through PipeCheck’s formal verification.

As such, verifying the soundness of PipeCheck µspec models is critical to the validity

of PipeCheck’s verification.

Meanwhile, if creating a µspec model for a future processor, the µspec exists prior

to the RTL. In this case, the design can be verified for MCM correctness before RTL is

written.2 This verification can be for litmus tests with PipeCheck, or for all programs

with the PipeProof work from this dissertation (Chapter 5). While such verification

can ensure the correctness of the design, there remains a need in this flow to verify that

the eventual processor RTL also respects the MCM of its ISA. A hardware design may

be verified as correctly implementing its ISA-level MCM, but if the RTL written to

implement that design does not ensure the design’s specified orderings, the taped-out

chip will still have MCM bugs. PipeCheck’s and PipeProof’s verification ensures that

the combination of the individual axioms in a µspec model satisfies the ISA-level MCM

2Such pre-RTL verification is an important part of the Progressive Automated Formal Verification
flow (Chapter 6).

71

for litmus tests and all programs respectively. This enables the MCM verification of

the processor RTL to be reduced to the verification that the RTL satisfies each of the

individual µspec axioms.

Both the verification of µspec axiom soundness and the verification that RTL satis-

fies µspec axioms require a way to check that µspec axioms truly hold on a processor’s

RTL implementation. This in turn requires a method to translate µspec axioms to

equivalent RTL properties that can be verified against an RTL implementation. There

has been a large amount of work on formal RTL verification [EF18], notably using

languages like Property Specification Language (PSL) [IEE10] and more recently,

SystemVerilog Assertions (SVA) [IEE13]. SVA is based on Linear Temporal Logic

(LTL), a logic for specifying properties of reactive systems [BK08]. LTL is highly

amenable to model checking and has been used to verify systems for decades [PP18].

Similarly, SVA assertions can be formally verified against an RTL implementation

using commercial tools such as Cadence JasperGold [Cad15b]. However, prior work in

this area has crucially not looked at the verification of multicore MCM properties.

Ideally, if translating µspec axioms to RTL properties, the RTL properties used

should be SVA assertions. This has multiple advantages, including easier integration

with existing industry practices (given the prevalence of SVA) and the ability to leverage

all the advances in SVA and RTL verification over the past decades. Verification of

the translated assertions using a tool like JasperGold would then be equivalent to

verifying that the µspec axioms hold on the RTL implementation.

Translating µspec axioms to SVA is non-trivial for two major reasons. Firstly,

the logics used for µspec and SVA—as well as their semantics—are starkly different

from each other. In particular, µspec models are axiomatic while SVA assertions are

evaluated over an operational model of RTL. Secondly, SVA verifiers like Cadence

JasperGold do not faithfully implement the complete SVA specification. They use an

72

over-approximation3 when conducting verification that can provide better performance

for certain types of properties, but introduces false positives while doing so. If a

translation procedure does not take care to work around the false positives of this

over-approximation, then JasperGold will find purported violations of its generated

SVA assertions that do not correspond to real bugs in the RTL implementation,

making it very hard (if not impossible) to determine the correctness of the RTL.

To enable the linkage of µspec axioms to RTL, this chapter presents RTLCheck, a

methodology and tool for automatically translating µspec axioms to SVA assertions

for a given litmus test. RTLCheck’s translation procedure successfully bridges the

gap between the disparate logics and semantics at microarchitecture and RTL, while

also working around the aforementioned over-approximation used by SVA verifiers.

Given a µspec microarchitectural specification, an RTL implementation, and a map-

ping between microarchitectural primitives (e.g. individual µspec nodes) and their

corresponding RTL signals and values, RTLCheck automatically generates System-

Verilog Assertions (on a per-test basis) and adds them to the RTL implementation.

RTLCheck then uses JasperGold to check these assertions on the RTL. The results of

this verification say whether the asserted properties have been proven for a given test,

whether they have been proven for the test up to a bounded number of cycles, or if a

counterexample (an execution trace that does not satisfy the property) has been found.

If a counterexample is found, a discrepancy exists between the microarchitectural

specification and RTL. This corresponds to a bug in the µspec model (if verifying

soundness) or a bug in the RTL (if verifying that RTL respects the µspec axioms).

As a case study, this chapter demonstrates RTLCheck’s usage on a multicore

version of the RISC-V V-scale open-source processor design4 [RIS15]. In doing so,

3An over-approximation attempts to prove a property stronger than the one the user requested, or
uses a system specification that is weaker than the actual system specification provided by the user.
It is a conservative approximation, so while it may give false positives, it will not give false negatives.

4V-scale has been deprecated since the research in this chapter was initially conducted [Mag16],
but it remains an interesting case study.

73

RTLCheck discovers a bug in the V-scale processor’s memory implementation. After

fixing the bug, I use RTLCheck to show that the multicore V-scale RTL satisfies a set

of microarchitectural axioms that are sufficient to guarantee SC for 56 litmus tests.

JasperGold discovers complete proofs (i.e. true for all possible traces of a given litmus

test) for 89% of the generated SVA properties in 11 hours of runtime, and can generate

bounded proofs (i.e. true for all possible test traces up to a certain number of cycles)

for the remaining properties.

RTLCheck’s linkage of µspec axioms to RTL enables (on a per-test basis) the

automated soundness verification of µspec models with respect to RTL, as well as

the automated verification that RTL satisfies µspec axioms. Such verification helps

push the correctness guarantees of early-stage MCM verification tools like PipeCheck

(Section 2.4) and PipeProof (Chapter 5) down to real processor implementations,

improving the correctness of taped-out chips. It also fills the requirement for post-

implementation verification in a progressive verification flow (Section 6.5) for MCM

properties in parallel processors. RTLCheck’s test-specific assertion generation also

serves as a stepping stone towards the translation of µspec axioms to SVA assertions

that are general across all programs.

The remainder of this chapter is organised as follows. Section 3.2 provides a

motivating example for RTLCheck’s use. Section 3.3 provides a high-level overview of

RTLCheck. Section 3.4 provides necessary background on the syntax and semantics of

SVA assertions, which are the type of assertions generated by RTLCheck. Section 3.5

explains the over-approximation used by SVA verifiers like JasperGold, the challenge

it introduces when conducting MCM verification, and RTLCheck’s solution to this

challenge. Section 3.6 covers the details of RTLCheck’s procedure for translating µspec

axioms to SVA assertions and assumptions for a given litmus test. Section 3.7 briefly

explains the microarchitecture and corresponding µspec model of the Multi-V-scale

processor which serves as this chapter’s case study. Section 3.8 covers RTLCheck’s

74

Core 0 Core 1 Core 2 Core 3

Arbiter

Memory

WB

DX

IF

WB

DX

IF

WB

DX

IF

WB

DX

IF

Figure 3.1: The Multi-V-scale processor: a simple multicore processor with four
three-stage in-order pipelines. The arbiter allows only one core to access memory at a
time.

Core 0 Core 1

(i1) [x] ← 1 (i3) r1 ← [y]

(i2) [y] ← 1 (i4) r2 ← [x]

Under SC: Forbid r1=1, r2=0

Figure 3.2: Code for litmus test mp

experimental methodology. Section 3.9 covers RTLCheck’s results, including a bug it

found in the V-scale processor. Section 3.10 covers related work specifically related to

RTLCheck, and Section 3.11 summarises the chapter.

3.2 Motivating Example

Figure 3.1 shows the Multi-V-scale processor, a simple multicore where each core has a

three-stage in-order pipeline. Instructions in these pipelines first go through the Fetch

(IF) stage, then a combined Decode-Execute (DX) stage, and finally a Writeback

(WB) stage where data is returned from memory (for loads) or sent to memory (by

stores). An arbiter enforces that only one core can access data memory at any time.

The read-only instruction memory (not shown) is concurrently accessed by all cores.

This processor is simple enough that it appears to implement sequential consistency

(SC), but how can one formally verify that its RTL indeed does so?

75

Fetch

DecodeExecute

Writeback

(i1)
St [x], 1

(i2)
St [y], 1

(i3)
Ld [y], 1

(i4)
Ld [x], 0

Core 0 Core 1

(a) µhb graph for the SC-forbidden outcome of Figure 3.2’s mp litmus test on Figure 3.1’s
processor. The cycle in this graph (shown by the bolded edges) shows that this scenario is
correctly unobservable at the microarchitecture level.

Axiom "WB_FIFO":

forall microops "a1", "a2",

(OnCore c a1 /\ OnCore c a2 /\

~SameMicroop a1 a2 /\ ProgramOrder a1 a2) =>

EdgeExists((a1,DX)), (a2,DX))) =>

AddEdge((a1,WB)), (a2,WB))).

(b) Axiom expressing that the WB stage should be FIFO.

always @(posedge clk) begin

if (reset | (stall_DX & ~stall_WB)) begin

// Pipeline bubble

PC_WB <= ‘XPR_LEN’b0;

store_data_WB <= ‘XPR_LEN’b0;

alu_out_WB <= ‘XPR_LEN’b0;

end else if (~stall_WB) begin

//Update WB pipeline registers

PC_WB <= PC_DX;

store_data_WB <= rs2_data_bypassed;

alu_out_WB <= alu_out;

csr_rdata_WB <= csr_rdata;

dmem_type_WB <= dmem_type;

end

end
(c) Verilog RTL responsible for updating WB pipeline registers.

Figure 3.3: Illustration of the MCM verification gap between microarchitectural axioms
and underlying RTL. The axiom in (b) states that the processor WB stage should be
FIFO. Sets of such axioms can be used to enumerate families of µhb graphs such as
the one in (a). RTLCheck translates axioms such as (b) to equivalent SVA assertions
at RTL on a per-test basis. These properties can be verified to ensure that Verilog
such as that in (c) upholds the microarchitectural axioms for a given test.

76

Even for a design as small as Multi-V-scale, verifying the MCM correctness of its

RTL is non-trivial. The actual RTL of Multi-V-scale is substantially more detailed

than Figure 3.1. Consider Figure 3.3c, which shows the portion of Multi-V-scale’s

Verilog RTL that updates the WB pipeline registers from the DX pipeline registers.

Processor RTL is very low-level, and trying to verify the MCM correctness of the

entire processor as a single verification problem is quite difficult. This verification

can be broken down into two pieces, along the layers of the hardware-software stack.

The first is to verify a microarchitecture-level ordering model for correctness against

the ISA-level MCM. The second is to verify that RTL respects the orderings of the

microarchitectural model.

PipeCheck [LPM14, LSMB16] (Section 2.4) developed methods for conducting

microarchitectural MCM verification against an ISA-level MCM for suites of litmus

tests by model checking µspec microarchitectural ordering specifications using microar-

chitectural happens-before (µhb) graphs. Figure 3.3a shows an example PipeCheck

µhb graph for the mp litmus test5 (Figure 3.2) running on two cores of a µspec model

of the Multi-V-scale processor. The graph contains a cycle (comprised of the four

thicker red and blue edges), indicating that the execution it represents is unobservable

on the µspec model of Multi-V-scale. Ordering rules specifying when and where to

add edges to a µhb graph are described in terms of µspec axioms such as the one in

Figure 3.3b. This axiom states that if the DX stage of an instruction a1 happens

before the DX stage of an instruction a2 that is later in program order on the same

core, then the WB stage of a1 must also happen before the WB stage of a2. This

WB FIFO axiom is responsible for the µhb edges between the WB stages of i1 and i2

and those of i3 and i4 in Figure 3.3a.

The microarchitectural verification conducted by tools such as PipeCheck is only

valid if each of the individual ordering axioms is actually upheld by the underlying

5mp was explained in Section 2.1.1.

77

RTL. Thus, there is a need to verify that these axioms are respected by the RTL of

the design. If they are not, then any microarchitectural verification assumes incorrect

orderings and is invalid. For example, if Figure 3.3b’s axiom from the Multi-V-scale

model was not actually maintained by the Multi-V-scale RTL in some execution of

the mp litmus test, then the assumed happens-before edges between the WB stages of

instructions on the same core would not actually exist. Without them, there is no

cycle in the graph, resulting in the forbidden outcome becoming observable.

The key contribution of RTLCheck lies in verifying (on a per-test basis) that a

given RTL implementation actually upholds the µspec axioms of its microarchitectural

specification. This enables PipeCheck’s µspec microarchitectural ordering specifica-

tions to be validated against RTL implementations for soundness (in the case where

the RTL exists prior to creating the µspec model), while also enabling verification

of processor RTL against a µspec model’s specified orderings (for the case where the

µspec model is created prior to RTL).

Returning to the example of Multi-V-scale, Figure 3.3c’s Verilog makes it appear as

though instructions do indeed move to WB in the order in which they entered DX (thus

satisfying the WB FIFO axiom), but it is challenging to tell from inspection whether

this is always the case. For instance, what if an interrupt occurs between the two

instructions? The situation is exacerbated as design and axiom complexity increases,

necessitating the creation of an automated tool like RTLCheck to automatically

generate assertions that can be formally verified to check whether or not RTL maintains

the required orderings.

3.3 RTLCheck Overview

Figure 3.4 shows the high-level flow of RTLCheck. Three of the primary inputs to

RTLCheck are the RTL design to be verified, a µspec model of the microarchitecture,

78

RTL
Implementation

Program Mapping
Function

RTL Verifier
(e.g. JasperGold)

Node Mapping
Function

µspec Microarch.
Axioms

RTLCheck

Temporal SV Assumptions Temporal SV Assertions

Litmus Test

Result: Property Proven?
Counterexample provided?

Assertion GeneratorAssumption Generator
-Memory Initialization
-Register Initialization
-Value Assumptions

-Outcome-Aware Translation
-Edge Mapping
-Filtering Match Attempts

Figure 3.4: Overall flow diagram of RTLCheck.

and a suite of litmus tests to verify the design against. The other inputs to RTLCheck

are the program and node mapping functions (described in Sections 3.6.1 and 3.6.3

respectively). The program mapping function translates litmus tests to initial/final

state assumptions on the RTL being verified. These assumptions restrict the executions

examined by the SVA verifier to those of the litmus test being verified. The node

mapping function translates individual µhb nodes to RTL expressions describing the

events modelled by those nodes. When translating a µspec axiom to an SVA assertion,

the node mapping function enables RTLCheck to translate the µhb nodes and edges

in that axiom to their RTL equivalents.

RTLCheck itself has two main components. The Assumption Generator (Sec-

tion 3.6.1) generates SVA assumptions constraining the executions examined by a

verifier to those of the litmus test being verified. It makes use of the program mapping

function to do so. The Assertion Generator (Section 3.5.4) generates SVA asser-

tions that check the individual axioms specified in the µspec model for the specific

litmus test. It uses the node mapping function in its translation. When the Assertion

Generator conducts its translation, it takes into account the differences between µspec

79

and SVA semantics as well as the assumption over-approximation (Section 3.5) used

by SVA verifiers.

The SVA assertions and assumptions that RTLCheck generates are passed to an

SVA verifier (the RTLCheck flow uses Cadence JasperGold [Cad15b]), along with the

RTL implementation. JasperGold then attempts to prove the assertions for the RTL

implementation, subject to the assumptions. (Details of the JasperGold configurations

that I use are provided in Section 3.9.2.) For each assertion, JasperGold may prove

the assertion correct for all possible traces for that litmus test outcome (unbounded

proof), for all traces of up to a certain number of cycles (bounded proof), or it may

find a counterexample (execution trace that does not satisfy the property).

3.4 SystemVerilog Assertions (SVA) Background

RTLCheck automatically translates µspec axioms for a given litmus test to SystemVer-

ilog Assertions (SVA) for that litmus test. This section provides necessary background

on SVA, an industry standard for the formal verification of RTL [CDH+15,EF18]. The

information in this section is necessary for understanding both RTLCheck’s operation

(Section 3.6) and the SVA over-approximation (Section 3.5) which RTLCheck must

work around during its translation.

SVA is based on Linear Temporal Logic (LTL) (Section 3.4.1), but includes support

for regular expressions (Section 3.4.2) and suffix implication (Section 3.4.3), which

increase its expressive power and make it capable of specifying useful properties which

LTL cannot express. This section draws heavily on the existing literature for LTL and

SVA [BK08,EF18,CDH+15].

80

Atomic prop. 𝑎

𝑎 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦

Next step 𝐗 𝑎

𝑎𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦

Until 𝑎 𝐔 𝑏

𝑎 ∧ ¬𝑏 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑎 ∧ ¬𝑏 𝑎 ∧ ¬𝑏 𝑏

Eventually 𝐅 𝑎

¬𝑎 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑎¬𝑎 ¬𝑎

Always 𝐆 𝑎

𝑎 𝑎𝑎 𝑎 𝑎

Figure 3.5: An illustration of the semantics of linear temporal logic properties, adapted
from Baier and Katoen [BK08] with a few syntactic changes for consistency with the
notation used in this dissertation.

3.4.1 Linear Temporal Logic (LTL)

LTL Syntax and Semantics

Temporal logic extends propositional logic with capabilities to refer to the execution

of a system over time. Linear Temporal Logic (LTL) was created by Amir Pnueli

in 1977 [Pnu77], and enables the specification of linear-time properties. Informally

speaking, linear-time properties are properties that describe what the executions of a

system should look like.

An abstract grammar for any LTL property ϕ is given below in Equation 3.1:

ϕ := true | a | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | ϕ1 U ϕ2 (3.1)

where a is an atomic proposition (i.e. a Boolean variable).

LTL properties are evaluated over traces of transition systems (Section 2.2.1),

where the traces are of infinite length. Intuitively, the temporal operators like X and

U allow the user to describe the behaviour of states that occur later in the trace than

the current state.

81

Figure 3.5 illustrates the semantics of different types of LTL properties. An LTL

property a where a is an atomic proposition is true if and only if the proposition a

holds in the initial state of the trace. Logical connectives like ¬ and ∧ function as

they do in propositional logic. In other words, if p is an LTL property, then ¬p is true

over a given trace if and only if p is false over that trace. Similarly, if p and q are LTL

properties, then p ∧ q is true over a given trace if and only if p is true over that trace

and q is also true over that trace.

As Figure 3.5 shows, an LTL property X a (“next”) is true over a given trace t

if and only if the LTL property a holds over the trace consisting of all of t except

its first state. Meanwhile, an LTL property aU b (“until”) holds if and only if a is

true for every state in the trace until b becomes true. b may become true at any time

(including in the first state), but it must eventually become true. In other words, even

if a is always true over the infinite trace, if b never becomes true then aU b evaluates

to false.

The until operator enables the creation of two other shorthands, F (“eventually”)

and G (“always”) that are frequently used when writing LTL properties. F is defined

for a given LTL property p as F p = trueU p. In other words, F p is true if and only

if the LTL property p is true at either the current state or some future state in the

trace. G , meanwhile, is defined for a given LTL property p as G p = ¬F (¬p). In

other words, G p is true if and only if p holds at every state in the trace.

Safety and Liveness

LTL specifies linear-time properties, of which there are two major classes: safety

properties and liveness properties. As Alpern and Schneider [Alp85] state, safety

properties intuitively specify that “something bad will never happen” with respect to

the system’s behaviour, while liveness properties intuitively specify that “something

good will happen”. An example of a safety property is G p, where p is an atomic

82

proposition.6 In this case, p becoming false is “something bad”, and the property

specifies that this should never happen (i.e. p must always be true). An example of a

liveness property is F p, where p is an atomic proposition. In this case, p becoming

true is “something good”, and the property specifies that this must happen at some

point in the trace.

Alpern and Schneider [Alp85] also provide formal definitions of safety and liveness

properties. They state that an LTL property p is a safety property if for every

counterexample σ to p (i.e. an infinite trace over which p does not hold), there exists

a finite prefix7 σ̂ of σ which cannot be extended to an infinite trace that satisfies p.

In other words, for every counterexample to a safety property p there is a finite point

in the counterexample trace where p becomes false and no further extension of that

prefix can make the property hold.

Meanwhile, an LTL property p is a liveness property if for every finite prefix of

an infinite trace, there exists an extension of it to an infinite trace such that the

infinite trace so created will satisfy p [Alp85]. In other words, a finite prefix of an

infinite trace is never irredeemable (unlike for safety properties). Counterexamples

to liveness properties can be restricted (without loss of generality) to “lasso-shaped”

traces, which consist of a finite prefix followed by an infinitely-repeated finite path.

For instance, such a counterexample for the property F p is a sequence of states s0s1s2

where p is false, followed by a repeating state s3 where p is false. The resultant trace

s0s1s2s3s3s3... is an infinite trace where p never holds, thus violating the property.

6Neither safety nor liveness properties are restricted to atomic propositions; the use of atomic
propositions here is purely for the simplicity of the examples.

7A finite prefix of an infinite trace is a sequence of the first n states of that trace for some finite n.
The remainder of the trace (i.e., the portion from the end of the prefix onwards) is known as the
suffix.

83

Model Checking LTL Properties

As Baier and Katoen [BK08] state, model checking for LTL properties is generally

conducted using an automata-based approach. To verify a given LTL property p

on a transition system TS, the verification procedure constructs an automata (state

machine) capable of recognising ¬p (henceforth referred to as A¬p). It then takes

the product of the transition system and state machine (TS ⊗ A¬p).8 The procedure

then checks whether there is any trace of this product where A¬p accepts. If so, the

property does not hold and the trace where A¬p accepts constitutes a counterexample.

Otherwise, the property p holds on TS.

The specific type of automaton used for verification of general LTL properties is a

nondeterministic Büchi automaton (NBA) [Büc90]. NBAs have no terminal states,

but have an acceptance set that constitutes a subset of the automaton’s states. The

NBA accepts an infinite trace t if t causes the NBA to visit a state in the acceptance

set infinitely often (i.e., at every point in the trace, one of the future states is in the

acceptance set). Baier and Katoen [BK08] provide further details on automata-based

LTL model checking.

If conducting verification of LTL properties using symbolic model checking, then

the above procedure requires the calculation of a nested fixed-point expression over

the states of the system, and is often very difficult [KV99]. The calculation of the

fixed-point expression corresponds to the search for a bad cycle in the system’s state

space. However, if one restricts oneself to the verification of LTL safety properties,

a more computationally inexpensive approach can be used [KV99]. As stated above

(in the “Safety and Liveness” section), every counterexample to a safety property has

a finite “bad” prefix after which it can never be extended to a trace satisfying the

property. Thus, instead of using an NBA to verify an LTL safety property psafety on a

8The product TS ⊗ A of a transition system TS and automaton A consists of TS and A
moving together in lockstep, with A transitioning according to the labels of the states that TS
traverses [BK08].

84

transition system TS, one can construct a finite automaton Ap prefix that recognises

at least one bad prefix of every counterexample to psafety. The verification procedure

can then simply take the product TS ⊗ Ap prefix, and check that there is no trace of

this product that reaches an accepting state of Ap prefix. This can be done through

symbolic reachability analysis, which is notably simpler than the NBA case [KV99].

The lower difficulty of the verification of safety properties as opposed to properties

that include liveness is the motivation for the SVA verifier over-approximation (Sec-

tion 3.5), which is the major source of difficulty for RTLCheck’s translation of µspec

to SVA.

3.4.2 Regular Expressions

While LTL is quite an expressive logic, there are certain types of properties desirable

for RTL verification that LTL cannot express on its own. For instance, it is impossible

to state the property “p holds at every even position9” in LTL [Wol81]. To fill this gap,

the SVA specification includes support for regular expressions and suffix implication.

In formal methods terminology, the combination of LTL with regular expressions and

suffix implication has the expressive power of ω-regular languages, while LTL alone

only has the expressive power of star-free ω-regular languages [EF18] (a strict subset

of the ω-regular languages).10

Regular expressions are expressions that describe regular languages, which are

themselves the languages accepted by finite automata [Sip06]. Regular expressions

are often used to describe patterns of strings in computer science. They include the

capability to express repetition (∗), alternation (|), and concatenation(·). If R is a

regular expression, then R∗ matches 0 or more repetitions of R. If R1 and R2 are

regular expressions, then R1 | R2 matches either R1 or R2. Finally, if R1 and R2 are

regular expressions, then R1 ·R2 matches a string consisting of a string that matches

9Here, a “position” refers to a state in a path or trace.
10In this section, a “language” is a set of strings [Sip06].

85

R1 followed by a string that matches R2. For example, the regular expression (a|b)∗·c

will match strings including aaac, bbc, and ababbc. Sipser [Sip06] provides further

details on regular expressions.

3.4.3 Suffix Implication

Suffix implication is similar to regular implication, but with the difference that the

consequent is only evaluated for the portion of the infinite trace that starts at the

point the antecedent matches. In a suffix implication r |→ q, r is a regular expression

and q is a property of LTL extended with regular expressions and suffix implication.

The implication is true over an infinite trace t if for every prefix tpre of t that matches

r, the suffix of t that starts at the point where tpre ends matches q. For example, the

property (¬a · ¬a · ¬a) |→ X a is true when evaluated on the fourth trace in Figure 3.5.

This is because for the prefix of the trace that consists of 3 successive states where

where a is false (i.e. the first 3 states of the trace), a is true in the next (fourth) state.

As in regular implication, if the antecedent does not match, then the property

evaluates to true. So for instance, the property (¬a) · (¬a)∗ |→ b evaluates to true on

the last trace in Figure 3.5 because the implication’s antecedent never matches any

prefix of the trace (since a is true in all states of the trace).

The combination of LTL, regular expressions, and suffix implication can state the

property “p holds at every even position” as follows [BBDL98]:

(true · (true · true)∗) |→ p

SVA is based on LTL, and includes support for regular expressions and suffix

implication. The next section provides an overview of SVA assertions and assumptions,

with examples.

86

sig1

sig2

sig4

clk

2

3

0

sig3 0

0 1 2 3 4 5

Figure 3.6: An example trace of four RTL signals with their clock. Section 3.4.4
evaluates an example assertion and assumption on this trace.

3.4.4 SVA Assertions and Assumptions

In SVA, atomic propositions are expressions over the signals in RTL that use common

arithmetic and logical operators. So for instance, if sig1 and sig2 are RTL signals,

then (sig1 == 1 && sig2 == 2) is an atomic proposition. A state consists of a

snapshot of the values of all RTL signals in a single clock cycle. The LTL operators

X , U, G , and F all have analogues in SVA: s nexttime, s until, always, and

s eventually. SVA also includes some syntactic sugar for a few other LTL operator

combinations [IEE13].

SVA includes capabilities for specifying regular expressions, called sequences. A

sequence may be an atomic proposition, or it may be created from other sequences. A

sequence matches a trace if some prefix of the trace matches the pattern described by

the sequence. The operators and, or, and not can take sequences as their operands to

create new sequences. For instance, a and b is a sequence which matches a trace if

both a and b match it. Sequences can be concatenated together with delays between

them. ##<x> represents a delay of x cycles, so for example, a ##2 b matches a trace

if a matches the trace, and 2 cycles after the end of a match of a, the remaining suffix

87

of the trace matches b. Delays can have ranges; ##[<x>:<y>] represents a delay of

between x and y cycles. y may be $, in which case the maximum number of delay

cycles is unbounded. Finally, sequences can be repeated some number of times. seq

[*<x>:<y>] represents between x and y consecutive repetitions of the sequence seq.

Again, y may be $, in which case the maximum number of repetitions is unbounded.

Suffix implication in SVA makes use of SVA’s support for regular expressions. In SVA,

suffix implication is specified using |->, and its semantics are exactly as explained in

Section 3.4.3 above.

Clocks provide a natural notion of time in RTL. Indeed, in SVA, properties are

given a clock, and move forward one step in time on the edge of the clock. In other

words, the LTL notion of moving from one state to the next state in a trace corresponds

to signals taking their new values at the next clock edge in SVA.

To put it all together, consider the following example SVA property:

assert property (@(posedge clk) ((sig1 == 2) ##1 (sig2 == 3) [*1:$]) |->

always (sig3 == 0));

The property matches traces where in the first cycle, sig1 has a value of 2, followed

by 1 or more cycles where sig2 has a value of 3, and at the end of each of these

prefixes, sig3 has a value of 0 for the remainder of the trace. This property will

evaluate to true on the RTL execution shown in Figure 3.6 (assuming the signal values

never change after the cycles shown). In Figure 3.6, sig1 has a value of 2 in cycle 0

as required, and in cycles 1 and 2, sig2 has a value of 3. Therefore, 2 prefixes match

the antecedent of the implication: cycles 0-1, and cycles 0-2. sig3 is 0 from cycle 1

onwards, and so always (sig3 == 0) evaluates to true at cycle 1 (required by the

first prefix) and cycle 2 (required by the second prefix). Since for all prefixes matching

the antecedent, the consequent is satisfied by the corresponding suffix of the trace,

the overall property evaluates to true.

88

By default, SVA will evaluate the property on traces that start at every cycle of

the execution (rather than just the first cycle). This can be thought of as putting an

always around the overall property. To evaluate the property only once at the start of

the RTL execution, one may put the assertion in an initial block in Verilog [CDH+15],

or use implication appropriately as RTLCheck does. (See Sections 3.6.1 and 3.6.5 for

details.)

Users may often wish to restrict the set of RTL executions they are verifying in

some way. For instance, RTLCheck’s assertions are litmus test-specific, so it needs

to restrict the verifier to those executions where instruction memory is initialised

with the test program. (RTLCheck also requires other restrictions to the considered

executions; see Section 3.6.1 for details.) SVA provides users with the ability to do

this through assumptions. SVA assumptions have the same syntax as SVA assertions,

but use the assume keyword rather than assert. If provided with an assumption,

SVA verifiers ignore RTL executions that caused the assumption to become false. For

instance, the assumption

assume property (@(posedge clk) (sig4 == 1));

will restrict an SVA verifier to only those executions where sig4 always has a

value of 1. This would cause the verifier to ignore Figure 3.6’s execution.

The handling of SVA assumptions by SVA verifiers uses an over-approximation

which makes translation from µspec to SVA difficult, as discussed in the next section.

3.5 Handling the SVA Verifier Assumption Over-

Approximation

When verifying SVA safety properties (Section 3.4.1) under a set of SVA assumptions,

SVA verifiers like JasperGold use an over-approximation of the assumptions to improve

89

performance. In a nutshell, SVA verifiers attempt to prove safety properties under

weaker assumptions than those which the user provides. Thus, the verifier effectively

attempts to prove a stronger property than that which the user specified. The

over-approximation can provide improved RTL verification performance for safety

properties. However, it introduces false positives when RTL satisfies the user-specified

property but not the over-approximation.

A straightforward translation of µspec axioms for a litmus test to SVA assertions

and assumptions suffers from false positives because of this over-approximation. Under

such a translation scheme, when the SVA verifier returns a counterexample to an

RTLCheck-generated SVA assertion, the RTL may indeed be buggy, or it may be a

false positive. This makes it very hard (if not impossible) for an automated tool like

RTLCheck to determine the correctness of the RTL using such a translation scheme.

RTLCheck therefore takes care to translate µspec axioms for a litmus test to SVA

assertions in a way that works around this over-approximation, eliminating the false

positives.

This section covers the over-approximation in detail, including the reasoning

behind it (Section 3.5.1), a discussion of its semantics (Section 3.5.2), how it can

cause problems when conducting MCM verification (Section 3.5.3), and RTLCheck’s

solution that works around the over-approximation (Section 3.5.4).

3.5.1 Reasoning Behind the Over-Approximation

Consider the following SVA fragment (example taken from Cerny et al. [CDH+15]):

assume property (a);

assert property (b);

This is equivalent to:

assert property ((always a) implies (always b));

90

or to use LTL notation, G a → G b. This is in turn equivalent to F¬a ∨G b. This

property is a liveness property (Section 3.4.1). To see why, note that any finite trace

prefix that seemingly violates the property (by having b become false at some cycle

in the prefix) can always be extended to a trace satisfying the property simply by

having a be false in a future cycle. Having a be false in a future cycle makes F¬a

true, which is enough to satify the property.

Thus, to prove an assertion b subject to an assumption a, one must prove F¬a∨G b,

which is a liveness property. F¬a ∨ G b will be a liveness property even if b is a

safety property. As such, the existence of any assumption a for a safety property

b turns the safety property b into a liveness property. This prevents SVA verifiers

from verifying safety properties using the optimized verification procedure that looks

for bad prefixes (Section 3.4.1), and can significantly increase verification runtime.

Rather than verify all properties as liveness properties, SVA verifiers like JasperGold

choose to compromise by weakening assumptions enough to remove their liveness

component. This reverts the proof of a safety property b under the assumption a

to a proof of a safety property [CDH+15, Cad15a], which can be verified using the

optimized verification procedure explained in Section 3.4.1.

Next, I discuss the exact nature of the over-approximation.

3.5.2 The Assumption Over-Approximation

Section 3.4.1’s optimized verification procedure for a safety property b searches for

a finite bad prefix violating b. If b is subject to an assumption a, the assumption

over-approximation only requires a to hold for the cycles in the bad prefix (as opposed

to all cycles in the infinite trace) for the bad prefix to be a counterexample. Thus, any

finite bad prefix violating b can no longer be extended to a trace satisfying the overall

property by having a become false after the bad prefix ends, because the assumption

over-approximation does not enforce constraints on a after the end of the bad prefix.

91

0 1 2 3 4Trace 1

𝑎 ∧ 𝑏 𝑎 ∧ 𝑏 ¬𝑎 ∧ 𝑏 ¬𝑎 ∧ ¬𝑏 ¬𝑎 ∧ ¬𝑏

0 1 2 3 4Trace 2

𝑎 ∧ 𝑏 𝑎 ∧ ¬𝑏 𝑎 ∧ ¬𝑏 𝑎 ∧ ¬𝑏 ¬𝑎 ∧ ¬𝑏

Figure 3.7: Two infinite traces over which an assertion b is evaluated subject to an
assumption a. Each cycle is annotated with its cycle number as well as whether a and
b hold in that cycle. b holds over Trace 1 regardless of whether the assumption over-
approximation is used. However, on Trace 2, b only holds if the over-approximation is
not used. If the over-approximation is used, an SVA verifier will return a prefix of
Trace 2 as a (false positive) counterexample to b.

As a result, all counterexamples to the verification of a safety property b subject to

an assumption a are now finite. This makes the verification of b subject to a a safety

property, which can be verified using Section 3.4.1’s optimized procedure.

The assumption over-approximation leads to JasperGold verifying a property that

is strictly stronger than required [CDH+15]. Counterexamples to the exact property

require b to be false for some cycle in the trace and require a to be true for the

entire (infinite) trace. Meanwhile, counterexamples to the property when using the

over-approximation only require b to be false for some cycle in the trace and for a to

be true for all the cycles up to and including the cycle where b becomes false.

Consider verifying a safety property b subject to an assumption a on the traces in

Figure 3.7. Each cycle (state) in the trace is labelled with its cycle number, as well

as whether a and b hold starting at those cycles. The top trace satisfies the exact

property F¬a ∨G b, because a becomes false at cycle 2. It also satisfies the property

if the over-approximation is used. This is because a becomes false for the first time

before b becomes false for the first time, so there is no bad prefix containing a cycle

where b is false but where a is true for the entirety of the prefix. (The result would be

the same if a and b both became false for the first time at the same cycle.)

The bottom trace also satisfies the exact property F¬a ∨G b, because a becomes

false at cycle 4. However, it does not satisfy the property if the over-approximation is

92

used, in which case it becomes a false positive. This is because b becomes false for the

first time at cycle 2, before a becomes false for the first time at cycle 4. Thus, cycles

0-2 constitute a bad prefix violating b where a is true for every cycle in the prefix, and

this qualifies as a counterexample when using the over-approximation.

Theoretically, a workaround to the over-approximation would be to not use assump-

tions at all, and instead to include the required assumptions inside every assertion.

For example, instead of writing:

a_1: assume property (@(posedge clk) ...);

a_2: assume property (@(posedge clk) ...);

...

a_n: assume property (@(posedge clk) ...);

assert property (@(posedge clk) <assertion body>);

one would write:

assert property (@(posedge clk)

(always a_1 and always a_2 and ... and always a_n) implies <assertion body>);

However, if RTLCheck generates properties in this manner, they prove to be prac-

tically infeasible for the JasperGold verifier. When JasperGold conducts verification,

it first compiles the SVA assertions provided to it and then begins their verification.

If generating assertions which internally contain their assumptions (as shown above),

it takes JasperGold over 10 hours to merely compile the generated assertions for the

Multi-V-scale processor (RTLCheck’s case study, explained in Section 3.7) for the

large litmus test amd3. In other words, it takes over 10 hours before verification of

the RTL for amd3 even begins. On the other hand, if generating assertions in the

traditional manner (with assertions and assumptions separate), compilation finishes in

93

seconds or minutes for the litmus tests I evaluated, and 10 hours of runtime is enough

to prove most of the properties RTLCheck generates for Multi-V-scale. Section 3.9

provides further details on RTLCheck’s runtimes.

RTLCheck’s solution to work around the over-approximation (Section 3.5.4) is

to generate SVA assertions that only require the weaker assumptions permitted by

the over-approximation, rather than the more powerful assumptions that would be

available if the over-approximation were not used. The next section explains how the

over-approximation can affect MCM verification of RTL.

3.5.3 The Over-Approximation in MCM Verification

RTLCheck’s translation of µspec axioms to equivalent SVA assertions and assumptions

for a litmus test is a two-step process:

1. Translate the litmus test to SVA assumptions that restrict the SVA verifier to

RTL executions of the litmus test (Section 3.6.1), and

2. Translate the µspec axioms to equivalent SVA assertions for the litmus test

(Section 3.5.4).

When verifying a litmus test on a µspec model with PipeCheck [LPM14,LSMB16],

the litmus test serves as a set of additional constraints, restricting PipeCheck to only

look at executions of that litmus test with the specified outcome (e.g. r1=1,r2=0 for

mp). When verifying µspec axioms at RTL, SVA assumptions perform the same function.

However, RTLCheck’s translated assumptions are weakened by the assumption over-

approximation such that that they no longer enforce all the constraints that the

litmus test constraints do for microarchitectural verification. Specifically, it becomes

infeasible to restrict the SVA verifier to a specific litmus test outcome (e.g. r1=1,

r2=0 for mp). Thus, if RTLCheck relies on all the constraints of the litmus test when

translating µspec axioms to SVA assertions, the generated assertions will fail (false

94

Axiom "Read_Values":
forall microops "i",
OnCore c i => IsAnyRead i => (

ExpandMacro BeforeAllWrites
\/
(

ExpandMacro NoInterveningWrite
/\
ExpandMacro BeforeOrAfterEveryWrite

)
).

DefineMacro "NoInterveningWrite":
exists microop "w", (
IsAnyWrite w /\ SameAddress w i /\ SameData w i /\
EdgeExists ((w, Writeback), (i, Writeback)) /\
~(exists microop "w'",
IsAnyWrite w' /\ SameAddress i w' /\ ~SameMicroop w w' /\
EdgesExist [((w , Writeback), (w', Writeback), "");

((w', Writeback), (i, Writeback), "")])).

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SameAddress w i /\ ~SameMicroop i w) =>
AddEdge ((i, Writeback), (w, Writeback), "fr", "red")).

DefineMacro "BeforeOrAfterEveryWrite":
forall microop "w", (
(IsAnyWrite w /\ SameAddress w i) =>
(AddEdge ((w, DecodeExecute), (i, DecodeExecute)) \/
AddEdge ((i, DecodeExecute), (w, DecodeExecute)))).

Figure 3.8: µspec axiom enforcing orderings and value requirements for loads on the
Multi-V-scale processor. Predicates relevant to load values are highlighted in red. The
edge referred to in Section 3.6.3 is highlighted in blue.

positives) because the assumptions under which they are verified have been weakened.

This section illustrates how such false positives can arise when translating µspec

axioms to SVA assertions and assumptions for a given litmus test.

Figure 3.8 shows a µspec axiom (and related macros) from the Multi-V-scale

microarchitecture definition. This axiom splits the checking of load values into two

categories: those which read from some write in the execution, and those which read

from the initial value of the address in memory. The axiom is litmus-test-independent:

it applies equally to any program that runs on the microarchitecture being modeled.

95

Core[0].DX

Core[0].WB

Core[1].DX

Core[1].WB

clk

Core[1].LData

St x

St x

St y

St y

Ld y

Ld y

Ld x

Ld x

0x1 0x1

Core[0].SData 0x1 0x1

2 3 4 5 6 7

Figure 3.9: Example execution trace of mp on Multi-V-scale where Ld y returns 1 and
Ld x returns 1. Signals relevant to the events St x @WB and Ld x @WB are underlined and
in red.

However, if verifying a single litmus test, PipeCheck uses the information about the

litmus test outcome of interest to prune out all logical branches of the axiom which

do not result in that outcome. Consider the application of this axiom to the load of

x from mp, which returns 0 in the outcome under test. In µspec, the SameData w i

predicate evaluates to true if instructions w and i have the same data in the litmus

test outcome, while DataFromInitialStateAtPA i returns true if i reads the initial

value of a memory location. For mp, PipeCheck evaluates all data-related predicates

(highlighted in red in Figure 3.8) according to the outcome specified by the litmus

test. For the load of x, PipeCheck evaluates the SameData w i predicate in the

NoInterveningWrite part of the axiom to false (as there is no write which stores

0 to x in mp). This causes the NoInterveningWrite /\ BeforeOrAfterEveryWrite

portion of the Read Values axiom to evaluate to false. Thus, the body of the

Read Values axiom is reduced to BeforeAllWrites, and PipeCheck knows that it

96

must add an edge indicating that Ld x @WB
hb−→ St x @WB11 (shown as one of the red

edges in Figure 3.3a).

If translating this simplified axiom (and the relevant part of the litmus test outcome)

to an SVA assertion p2 and assumption p1, the result is:

p1: assume property (@(posedge clk) <Ld x returns 0>);

p2: assert property (@(posedge clk) <Ld x@WB happens before St x@WB>);

The specific SVA constructs used for the assumption and assertion are covered in

Section 3.6.

Now consider evaluating p2 subject to the assumption p1 on a correct implement-

ation of Multi-V-scale. Figure 3.9 shows one possible trace of mp on Multi-V-scale,

specifically one where both loads return 1 (i.e. r1=1,r2=1). (No events of interest

happen in cycles 0-1 of the trace, so they are not shown for brevity.) This is clearly

correct behaviour on the part of Multi-V-scale, as instructions are performed in-order

and atomically, and the outcome r1=1,r2=1 is allowed under SC. Without the assump-

tion over-approximation, an SVA verifier would correctly ignore this trace because

the load of x returns 1 in it, thus violating the assumption p1. However, with the

assumption over-approximation, cycles 0-3 of Figure 3.9’s trace will be returned to

the user as a counterexample to p2, which constitutes a false positive. The reason

for this is as follows. p2 is a safety property (Section 3.6.3 provides details on the

exact SVA constructs used to map the edge). Cycle 3 violates p2, because the store

of x has happened before the load of x. Thus, cycles 0-3 constitute a bad prefix to

the safety property p2. Under the assumption over-approximation, the assumption

p1 only needs to hold for the cycles that are part of the bad prefix. The load of x

does not happen in cycles 0-3, so there is no need to enforce its value as being 0 in

those cycles. Thus, the assumption p1 is satisfied for cycles 0-3, which is enough

11In this chapter, a
hb−→ b denotes a µhb edge from a to b.

97

for these cycles to constitute a counterexample to p2 under the over-approximation.

The assumption is indeed violated in cycle 6, so Figure 3.9’s trace should not be a

counterexample. Indeed, on a correct implementation of Multi-V-scale, it is impossible

to extend cycles 0-3 to an infinite trace12 where the load of x returns 0. However, the

over-approximation ignores this fact and returns cycles 0-3 of Figure 3.9’s trace as a

counterexample.

To overcome the challenge introduced by the assumption over-approximation,

RTLCheck’s translation procedure must translate µspec axioms for a litmus test in a

way that accounts for all outcomes of the litmus test, not just its outcome of interest.

The next section describes how RTLCheck does so.

3.5.4 Solution: Outcome-Aware Assertion Generation

Due to the assumption over-approximation, the assertion generated for the axiom

in Figure 3.8 for mp’s load of x must account for both the case where the load of x

returns 1 and the case where it returns 0. (The load of x cannot return any other

values in an execution of mp.)

If the load of x returns the initial value of 0, this corresponds to the

BeforeAllWrites portion of the axiom. The SVA property for this case must

check that Ld x @WB
hb−→ St x @WB and that the load returns 0. Similarly, if the load

returns 1, this corresponds to the part of the axiom comprising NoInterveningWrite

and BeforeOrAfterEveryWrite. The equivalent SVA property here must check that

St x @WB
hb−→ Ld x @WB and that the load returns 1.

To accomplish this outcome-aware translation of µspec axioms, RTLCheck does

not evaluate data-related predicates like SameData or DataFromInitialStateAtPA

to true or false based on the litmus test it is generating properties for. Instead, for

12Assume that the transition system representing the RTL enters a halt state once the litmus test
has finished executing, and that the only next state for the halt state is itself. Thus, an infinite trace
of the RTL’s transition system constitutes an execution of the litmus test followed by an infinite
repetition of the halt state.

98

each such predicate, if any edge requires the predicate to be true for the edge to hold,

RTLCheck generates a load value constraint for the edge based on the value of the

data-related predicate. Load value constraints encode the constraints on the data

values of loads involved in a given edge, and must be taken into account by the node

mapping function when translating individual µhb edges (Section 3.6.3).

For mp’s load of x, the µhb edge in Figure 3.8’s BeforeAllWrites macro requires

DataFromInitialStateAtPA i to be true, which in turn requires that the load returns

the initial value 0. This requirement on the load’s value is stipulated as a load value

constraint when mapping the edge from BeforeAllWrites. Similarly, the µhb edges

in Figure 3.8’s NoInterveningWrite and BeforeOrAfterEveryWrite macros require

SameData w i to be true. In the case of mp’s load of x, this predicate enforces that

the load returns 1 (the same data as the write i1 in mp), and this requirement is also

encoded as a load value constraint when mapping the edge. The mapped edges of

the two cases are combined with an SVA or (translated from the µspec \/), allowing

the translated property to cater to both the executions where the load of x returns

0 and the executions where it returns 1, as necessary under the assumption over-

approximation. (Section 3.6.2 provides further details on RTLCheck’s overall axiom

translation procedure.)

Special handling is also required for the µspec predicate DataFromFinalStateAtPA.

The predicate DataFromFinalStateAtPA i returns true if i stores a value equivalent

to the final value of its address in the litmus test. Accounting for this predicate at

RTL requires ensuring that a given write is the last write to a particular address in an

execution. However, just as in the case of ensuring a specific litmus test outcome, the

assumption over-approximation makes it infeasible to ensure that a particular write

happens last in an RTL execution. Thus, when translating this predicate, assertion

generation always (conservatively) evaluates this predicate to false. Doing so ensures

that the generated properties check all possible orderings of writes (i.e., a superset

99

assume property (@(posedge clk) first |-> mem[21] == {32’d0});

assume property (@(posedge clk) first |->

mem[1] == {7’b0,5’d2,5’d1,3’d2,5’b0,‘RV32_STORE});

assume property (@(posedge clk)

(((core[1].PC_WB == 32’d24 && ~(core[1].stall_WB)) |->

(core[1].PC_WB == 32’d24 && ~(core[1].stall_WB) &&

core[1].load_data_WB == 32’d1))

and

((core[1].PC_WB == 32’d28 && ~(core[1].stall_WB)) |->

(core[1].PC_WB == 32’d28 && ~(core[1].stall_WB) &&

core[1].load_data_WB == 32’d0)))

);

assume property (@(posedge clk)

(((core[0].halted == 1’b1 && ~(core[0].stall_WB)) &&

(core[1].halted == 1’b1 && ~(core[1].stall_WB)) &&

(core[2].halted == 1’b1 && ~(core[2].stall_WB)) &&

(core[3].halted == 1’b1 && ~(core[3].stall_WB))) |-> (1)));

Figure 3.10: A subset of the SV assumptions RTLCheck generates for mp. Some signal
structure is omitted for brevity.

of the executions that PipeCheck would examine), including the write ordering the

litmus test focuses on.

3.6 RTLCheck Operation

This section describes the operation of RTLCheck (Figure 3.4) in detail. Section 3.6.1

describes the process of assumption generation, and Section 3.6.2 describes the overall

procedure for assertion generation. Sections 3.6.3 and 3.6.4 describe the process of

mapping individual µhb edges and NodeExists predicates to SVA respectively. Finally,

Section 3.6.5 describes how RTLCheck ensures that generated assertions are checked

from the beginning of traces and not for some suffix of a trace.

100

3.6.1 Assumption Generation

RTLCheck’s generated properties are litmus test-specific, so the executions examined

by an RTL verifier for these properties need to be restricted to the executions of the

litmus test in question. As depicted in Figure 3.4, the Assumption Generator performs

this task using a program mapping function provided by the user. Program mapping

functions link a litmus test’s instructions, initial conditions, and final values of loads

and memory to RTL expressions representing these constraints on the implementation

to be verified. The parameters provided to a program mapping function are the litmus

test instructions, context information such as the base instruction ID for each core,

and the initial and final conditions of the litmus test.

The assumptions generated for a given litmus test must accomplish three tasks:

1. Initialize data and instruction memories to the litmus test’s initial values and

instructions respectively.

2. Initialize registers used by test instructions to appropriate address and data

values.

3. Enforce that the values of loads and the final state of memory respect test require-

ments in generated RTL executions (to the extent allowed by the assumption

over-approximation).

Figure 3.10 shows a subset of the assumptions that must be generated for the mp

litmus test from Figure 3.2 for Multi-V-scale.

Memory Initialization: The first assumption in Figure 3.10 is an example of data

memory initialization. It sets x to its initial value of 0 as required by mp. The first

signal is auto-generated by the Assumption Generator, and is set up so that it is 1 in

the first cycle after reset and 0 on every subsequent cycle. By using suffix implication

triggered on the first signal being 1, the assumption only enforces that the value of

101

the address in memory is equivalent to the initial condition of the litmus test at the

beginning of the execution. This distinction is necessary as the verification needs to

allow the address to change value when stores write to that address as the execution

progresses. (The first signal is also used to filter match attempts as Section 3.6.5

describes.) The second assumption is an instruction initialization assumption. It

enforces that core 0’s first instruction is the store that is i1 in Figure 3.2’s mp code.

Register Initialization: The assembly encoding of litmus test instructions uses

registers for addresses and data. Register initialization assumptions set these registers

to the correct addresses and data values at the start of RTL execution. They are

similar in structure to memory initialization assumptions.

Value Assumptions: Load value assumptions cannot be used to enforce an execution

outcome due to the assumption over-approximation of SVA verifiers (see Section 3.5),

but they can still be used to guide the verifier and reduce the number of executions it

needs to consider. The third assumption in Figure 3.10 contains two such implications.

Each one checks for the occurrence of one of the loads in mp and enforces that it returns

the value in the test outcome (0 and 1 for x and y respectively) when it occurs. The

last assumption in Figure 3.10 is a final value assumption. It contains an implication

whose antecedent is the condition that all cores have halted their Fetch stages and all

test instructions have completed their execution. The consequent of the implication

stipulates any final values of memory locations that are required by the litmus test.

Since mp does not enforce any such requirements, the consequent of the implication is

merely a 1 (i.e. “true”).

A pleasantly surprising side effect of assumption generation is that for certain tests,

assumptions alone turn out to be sufficient in practice to verify the RTL. For most

assumptions, JasperGold (the commercial RTL verifier used by RTLCheck) can find

covering traces, which are traces where the assumption condition occurs and can be

enforced. For instance, a covering trace for an assumption enforcing that the load of y

102

OR

OR

Ld x @ WB →
St x @ WB

Data(Ld x) == 0

Data(Ld x) == 1 St x @ WB →
Ld x @ WB

St x @ DX →
Ld x @ DX

Ld x @ DX →
St x @ DX

AND AND

AND

Figure 3.11: The constraint tree generated by RTLCheck’s parsing and simplification
of Figure 3.8’s Read Values axiom for the load of x in mp. Load value constraints
are highlighted in red.

returns 1 would be a partial execution where the load of y returns 1 in the last cycle.

A covering trace for a final value assumption in particular would by definition contain

the execution of all instructions in the test. The covering trace must also obey any

constraints on instruction execution stipulated by other assumptions, including load

value assumptions. As such, a covering trace for mp’s final value assumption is an

execution where the load of y returns 1 and the load of x returns 0. A search for such

a trace is equivalent to finding an execution where the entire forbidden outcome of mp

occurs. If JasperGold can prove that a covering trace for an assumption does not exist,

it will label the assumption as unreachable. An unreachable final value assumption

means that there are no executions satisfying the test outcome. This result verifies

the RTL for that litmus test without checking the generated assertions. Thus, a final

value assumption forces JasperGold to try and find a covering trace of the litmus test

outcome, possibly leading to quicker verification. As such, final value assumptions are

beneficial even when the test does not specify final values of memory, but I expect this

benefit to be largest in relatively small designs. Section 3.9.2 quantifies my results.

103

3.6.2 Overall µspec Axiom Translation Procedure

RTLCheck’s translation of µspec axioms to SVA assertions begins by parsing and

simplifying the µspec axioms provided to it as input. This parsing and simplification is

based on that of PipeCheck (explained in Section 2.4), but with two notable differences.

Specifically, as Section 3.5.4 explains, RTLCheck does not evaluate the data-related

predicates SameData and DataFromInitialStateAtPA to true or false for a given

litmus test. Instead, RTLCheck determines what value a load must have in that litmus

test in order for these predicates to be true, and evaluates the predicate to a load value

constraint which encodes this information. Additionally, RTLCheck conservatively

evaluates the DataFromFinalStateAtPA predicate in any µspec axiom to false.

RTLCheck evaluates all other µspec predicates to true or false according to the

litmus test it is generating assertions for. The result of this parsing and simplification

is a tree of constraints which must be satisfied by the RTL in order for it to maintain

the µspec axiom for the litmus test. Nodes in this constraint tree may be AND, OR,

and NOT (parsed from the µspec /\, \/, and ~ respectively), µhb edges or nodes

stipulated by the µspec axiom, or load value constraints generated from the evaluation

of data-related predicates.

For example, Figure 3.11 shows the constraint tree generated after the parsing

and simplification of Figure 3.8’s Read Values axiom for the load of x in mp. This

constraint tree has two branches, each corresponding to a different value for the

load of x in mp. The branches contain load value constraints corresponding to those

outcomes. The left branch of the top-level OR corresponds to the BeforeAllWrites

case of the Read Values axiom. For the BeforeAllWrites case to be true, the edge

Ld x@WB
hb−→St x@WB must exist. The predicate DataFromInitialStateAtPA i must

also evaluate to true where i is the load of x, which means that the load of x must

return 0. RTLCheck duly encodes this information as a load value constraint for that

branch.

104

Meanwhile, the right branch of the top-level OR corresponds to the NoInterveningWrite

/\ BeforeOrAfterEveryWrite portion of the Read Values axiom. This branch

of the axiom requires the edge St x@WB
hb−→Ld x@WB to exist, as well as one of the

Ld x@DX
hb−→St x@DX and St x@DX

hb−→Ld x@DX edges. RTLCheck therefore includes these

edges in the constraint tree’s right branch, as Figure 3.11 shows. This branch of the

axiom also requires SameData w i to be true, where w is a write to the same address13

as i and i is the load of x. For this SameData predicate to be true, the load of x must

have the same value as the store to x in mp (since it is the only write to that address

in the litmus test). Thus, the load of x must have a value of 1 for this case, and

RTLCheck encodes this information as a load value constraint for the right branch.

Once the constraint tree is generated, RTLCheck translates a given axiom to

an SVA assertion as follows. AND, OR, and NOT nodes are translated to their SVA

equivalents and, or, and not. Each µhb edge and node are translated according to

the procedures in Sections 3.6.3 and 3.6.4 respectively. The load value constraints

that apply to a given µhb edge or node are those that are ANDed to it. Thus, the

constraint that the load of x return 0 in the left branch of the top-level OR applies

to the edge Ld x@WB
hb−→St x@WB, but not to any other edge. Meanwhile, the constraint

that the load of x return 1 in the right branch of the top-level OR applies to all other

edges in the constraint tree.

3.6.3 Mapping Individual µhb Edges to SVA

When mapping a µhb edge src
hb−→dest to SVA, RTLCheck requires some notion

of what the nodes src and dest represent at RTL. This functionality is provided

by the node mapping function written by the user and provided to RTLCheck as

input. Figure 3.12 shows pseudocode for a node mapping function for Figure 3.1’s

Multi-V-scale processor. The input parameters for a node mapping function are (i)

13Enforced through the SameAddress predicate in NoInterveningWrite in Figure 3.8.

105

fun mapNode(node, context, load_constr) :=

let pc := getPC(node.instr, context) in

let core := node.core in

match node.stage with

| IF => return "core[" + core + "].PC_IF == "

+ pc + " && ~stall_IF"

| DX => return "core[" + core + "].PC_DX == "

+ pc + " && ~stall_DX"

| WB => let lc := get_lc(node, load_constr) in

let str := "core[" + core + "].PC_WB == "

+ pc + " && ~stall_WB" in

if lc != None then

str += (" && load_data_WB == " + lc.value)

return str

Figure 3.12: Multi-V-scale node mapping function pseudocode.

assert property (@(posedge clk) first |->
(((((~((core[1].PC_WB == 32'd28 && ~(core[1].stall_WB)) ||
(core[0].PC_WB == 32'd4 && ~(core[0].stall_WB)))) [*0:$]
##1
(core[1].PC_WB == 32'd28 && ~(core[1].stall_WB) &&
core[1].load_data_WB == 32'd0)
##1
(~((core[1].PC_WB == 32'd28 && ~(core[1].stall_WB)) ||
(core[0].PC_WB == 32'd4 && ~(core[0].stall_WB)))) [*0:$]
##1
(core[0].PC_WB == 32'd4 && ~(core[0].stall_WB))))))

);

Figure 3.13: SV assertion checking Ld x@WB
hb−→ St x@WB in Multi-V-scale for mp

where Ld x returns 0. The first bold red Verilog expression corresponds to mapping a
node with a load value constraint (namely that Ld x is in WB and returns 0). The
second bold red Verilog expression corresponds to mapping a node without a load
value constraint (namely that St x is in WB). Some signal structure is omitted for
brevity.

the node to be mapped, which is a specific microarchitectural event for a specific

instruction, (ii) context information, such as the starting program counter (PC) for

each core, and (iii) a list of load value constraints that must be obeyed by the edge

being mapped (as described in Sections 3.5.4 and 3.6.2).

The output of the node mapping function is a Verilog expression that corresponds

to the occurrence of the node to be mapped in RTL. The Verilog expression must

106

contain a unique identifier for the instruction whose node is being mapped, so as to

differentiate the mappings of two instructions for the same µhb node. If the node

being mapped belongs to a load instruction, and it matches any of the load value

constraints passed to the mapping function, the Verilog expression generated by the

mapping function must also stipulate that the load has the required value at that

point. For instance, in Figure 3.13, the first Verilog expression highlighted in bold

red corresponds to mapping Ld x@WB from mp with the load value constraint that the

load must return 0. Meanwhile, the second Verilog expression highlighted in bold red

corresponds to mapping St x@WB from mp with no load value constraints. The value

of PC WB is used as a unique per-instruction identifier in the mappings.

The mapping of a µhb edge to SVA must be able to handle arbitrary delays before

and between the src and dest nodes. An ordering edge src
hb−→dest is a statement

that src happens before dest for the execution in question. It says nothing about

when src and dest occur in relation to other events in the execution, nor does it

specify the duration of the delay between the occurrences of src and dest. A naive

translation of such an edge to SVA would be to use the mechanism of delay ranges

(Section 3.4.4):

##[0:$] mapNode(src, lc) ##[1:$] mapNode(dest, lc)

Here, mapNode represents the mapping function and lc the list of load value

constraints. This SVA sequence allows an initial delay of 0 or more cycles (##[0:$])

before the occurrence of src, since src may not occur at the first cycle in the execution.

It also includes an intermediate delay of 1 or more cycles (##[1:$]) between src

and dest, as the duration of the delay between src and dest is not specified by the

microarchitectural model.

Unfortunately, this standard mechanism is insufficient for checking that src does

indeed happen before dest for all executions examined. Consider in isolation the

edge in blue from Figure 3.8 in BeforeAllWrites enforcing that Ld x @WB
hb−→ St x @WB,

107

with a constraint that the load of x must return 0. At the same time, consider the

execution trace of mp in Figure 3.9 which reflects the outcome where St x @WB
hb−→

Ld x @WB and the load returns 1. (The relevant signal values are underlined and in red

in Figure 3.9.) Since Figure 3.9’s execution has the events occurring in the opposite

order and the load values are different, Figure 3.9 should serve as a counterexample

to the property checking the edge from BeforeAllWrites. However, if one simply

uses the straightforward mapping above (i.e. ##[0:$] <Ld x=0 @WB> ##[1:$] <St

x@WB>), Figure 3.9 is not a counterexample for the property!

The reason that Figure 3.9 is not a counterexample is that the unbounded ranges

can match any clock cycle, including those which contain events of interest like the

source and destination nodes of the edge. For this particular example, the initial

##[0:$] can match the execution up to cycle 5. At cycle 6, since the load of x

returns 1, Ld x=0 @WB does not occur, so the execution cannot match that portion of

the sequence. However, nothing stops the initial delay ##[0:$] from being extended

another cycle and matching cycles 0-6. Indeed, even the entire execution can match

##[0:$], thus satisfying the property. Since Figure 3.9’s execution never violates the

sequence, it is not a counterexample to the property.

To address this problem of incorrect delay cycle matches, the conditions on the

initial and intermediate delays must be stricter to stipulate that they are in fact

repetitions of clock cycles where no events of interest occur. In this context, an event

is of interest if it matches the node in question (i.e., if it matches the microarchitectural

instruction and event), but regardless of the data values themselves. As such, for initial

delays and intermediate cycles, RTLCheck uses this sequence:

(~(mapNode(src, None) || mapNode(dest, None))) [*0:$]

No load constraints are passed to the calls to the mapping function to generate

the delay sequence. This prevents delay cycles from matching cases where events of

interest occur with incorrect values, as in the case above for the load of x in mp. The

108

overall translation scheme that RTLCheck uses for happens-before edges (henceforth

referred to as edgeTran) is:

(~(mapNode(src, None) || mapNode(dest, None))) [*0:$]

##1 mapNode(src, lc) && ~mapNode(dest, None) ##1

(~(mapNode(src, None) || mapNode(dest, None))) [*0:$]

##1 mapNode(dest, lc)

This edge translation scheme is capable of handling variable delays while still

correctly checking the edge’s ordering. A simple proof of the edge translation scheme

is provided below.

Theorem 1 (Edge Translation Correctness). For any µhb edge e = src
hb−→ dest,

where src and dest represent unique events in microarchitectural and RTL execution,

edgeTran(e) generates an SVA property that will return a counterexample if any RTL

execution exists where both src and dest occur, but src does not happen before dest.

Proof. Any RTL execution RExec where both src and dest occur but src does not

happen before dest must begin with the following: some number of cycles where

¬src ∧ ¬dest holds, followed by a cycle where dest is true. In other words, dest

becomes true before or at the same cycle where src becomes true, thus breaking

the requirement that src
hb−→ dest. This proof must show that RExec cannot match

edgeTran(e).

Let delayRange be the SVA fragment (~(mapNode(src, None) || mapNode(dest,

None))) [*0:$], and let srcTran be the SVA fragment mapNode(src, lc) &

~mapNode(dest, None). If RExec were to match edgeTran(e), the initial cycles

where ¬src∧¬dest holds must match the initial delayRange in edgeTran(e), as they

cannot match its subsequent srcTran portion. The subsequent cycle in RExec where

dest becomes true cannot match the initial delayRange, since it requires that dest

not hold (regardless of its value, if it is a load). Thus, this cycle must match srcTran

109

for RExec to match edgeTran(e). However, this cycle cannot match srcTran, since

srcTran also requires that dest not hold (again, regardless of its value, if it is a load).

Thus, RExec cannot match edgeTran(e). �

3.6.4 Mapping Node Existence Checks to SVA

Some properties require simply checking for the existence of a µhb node (i.e.

NodeExists <node>), rather than an edge between two nodes. In these cases, we use

a similar but simpler strategy to that used for mapping edges. The existence of a

node is equivalent to a trace consisting of zero or more cycles where the node does

not occur followed by a cycle where it does occur. However, simply translating a

NodeExists <node> predicate using

(~mapNode(node, None)) [*0:$] ##1 mapNode(node, lc)

does not result in a property which ensures that node exists in the trace. This is because

under SVA semantics, the possibly infinite repetitions of ~mapNode(node, None) can

match an entire trace where node never occurs, and the property is deemed to

hold [IEE13,EF18]. Thus, this translation scheme would result in false negatives i.e.

the property holding but RTL not actually guaranteeing the node’s existence.

To ensure that the node exists in a trace, a trace must be required to match the

entire sequence above. In other words, mapNode(node, lc) must occur at some cycle

of the trace. SVA provides a method to do this through strong sequences, as opposed

to the “weak” sequences discussed so far. A trace matches a strong sequence if and

only if the trace matches the entire sequence, which is exactly what is required to

ensure the existence of the node being checked for. (The semantics of strong sequences

are analogous to those of the LTL U operator [EF18].)

Thus, RTLCheck translates a NodeExists <node> predicate to

strong((~mapNode(node, None)) [*0:$] ##1 mapNode(node, lc))

110

One might wonder why RTLCheck does not use strong sequences when translating

an edge src
hb−→ dest. Doing so would not just check for reorderings of src and dest, but

also ensure that src and dest always eventually exist in a trace. The reason RTLCheck

does not use strong sequences for edges is that they significantly increase runtime. For

instance, if µhb edges are translated using the strong version of the sequence from

edgeTran, JasperGold can only completely prove one of the generated assertions for

mp on Multi-V-scale in 7 hours of runtime. On the other hand, if the weak sequences

from edgeTran are used, JasperGold can prove all the generated properties for mp on

Multi-V-scale in under 8 minutes. (See Section 3.9 for details.) RTLCheck’s main

function is to detect reorderings of events relevant to MCM verification, and weak

sequences suffice if translating edges for this purpose. RTLCheck is not intended to

verify properties related to deadlock, livelock, starvation, etc. The verification of such

properties would need to ensure that specific events (like src and dest) exist in an

execution.

3.6.5 Filtering Match Attempts

Consider the following SVA assertion:

p3: assert property (@(posedge clk) ##3 <St x@WB>);

If checking this assertion with respect to the execution in Fig. 3.9, one would expect

the property to return true, as the WB stage of the store to x indeed occurs three

cycles after the beginning of the execution. (Figure 3.9 elides the execution’s first

two cycles for brevity.) However, as Section 3.4.4 mentioned, SVA verifiers will check

this assertion not just on a trace of the overall RTL execution, but on all suffixes of

the trace as well. In other words, one match attempt of the property begins at cycle

0 and checks for St x @WB at cycle 3. Another match attempt begins at cycle 1 and

checks for St x @WB at cycle 4, and so on for every cycle in the execution. If any of

111

these match attempts fail, the entire property is considered to have failed. Here, the

match attempt that begins at cycle 1 will fail, as St x will not be in WB at cycle 4 as

the property requires.

Each µspec axiom corresponds to a microarchitecture-level ordering which is

enforced once with respect to an execution as a whole. To achieve such semantics,

the properties generated by RTLCheck must explicitly filter out match attempts that

do not start at the beginning of RTL execution. To filter out match attempts other

than the first attempt, RTLCheck guards each of its assertions with implications14

triggered by the first signal, which is auto-generated by the Assumption Generator

(Section 3.6.1). For instance, the guarded version of assertion p3 above is:

assert property (@(posedge clk) first |->

##2 <St x@WB>);

Now, any match attempt that begins at a cycle after cycle 0 will trivially evaluate

to true, as the first signal will be 0 and the implication consequent will never

be evaluated. Meanwhile, the match attempt beginning at cycle 0 will trigger the

implication and cause evaluation of the consequent property as required.

Putting it all together, Figure 3.13 shows an example assertion for mp which checks

for the existence of an edge Ld x=0 @WB
hb−→ St x @WB on Multi-V-scale. As Section 3.6.3

explains, the mapping of the load’s WB stage checks that the data value it returns is

0, as required by its load value constraint. In general, assertions check multiple edges,

and are larger than the one in Figure 3.13.

3.7 Case Study: Multi-V-scale

This section describes the relevant details of the Multi-V-scale processor, a multicore

version of the RISC-V V-scale processor [RIS15]. The V-scale processor itself is a

14The same functionality could be achieved by placing the assertion in a Verilog initial

block [CDH+15].

112

C0_St_PipeStage

C1_Ld_PipeStage

C1_Ld_Transaction

Arbiter.cur_core

clk

Arbiter.prev_core

DX

DX

WB

WB

Addr

0

Ld Data

1

0 1

C0_St_Transaction Addr

2 3 4 5 6 7

St Data

Figure 3.14: An example timing diagram for Multi-V-scale showing how a store on
core 0 and a load on core 1 access memory through the arbiter in a pipelined manner.

Verilog implementation of the RISC-V Z-scale processor [LOM15], which is written in

Chisel [BVR+12].

3.7.1 V-scale Microarchitecture

The V-scale pipeline is suited for microcontrollers and embedded systems. It is similar

in spirit to the ARM Cortex-M0/M3/M4 architectures [LOM15]. The V-scale pipeline

is three stages long, as shown in Figure 3.1. The three stages are Fetch (IF), a

combined Decode-Execute stage (DX), and the Writeback stage (WB).

The source code of V-scale does not implement a cache, but does have an imple-

mentation of a memory array. When accessing memory, both loads and stores send

their addresses to memory in the DX stage. In the WB stage, a load receives its data

from memory, and a store provides its data to memory, to be clocked in on the next

rising edge.

The V-scale memory is pipelined, and is able to start a memory transaction every

cycle. Thus, it can start a memory transaction for an instruction a which is in DX while

113

providing data to or reading data from an instruction b which is in WB. Figure 3.14

shows a timing diagram of how V-scale loads and stores operate. The memory does

not always operate as expected; RTLCheck discovered a bug in its implementation in

the course of its analysis. (See Section 3.9.1.)

3.7.2 Multi-V-scale

I created a multicore version of the V-scale processor by instantiating four V-scale

pipelines and connecting them to data memory through a simple arbiter that I

developed (Figure 3.1). The arbiter is connected to all four cores, and allows only

one of them to access data memory every cycle. If cores other than the one currently

granted access wish to access memory, they must stall in the DX stage until the arbiter

grants them access.

The arbiter is capable of switching from any core to any other core in any cycle.

The switching pattern of the arbiter is dictated by a top-level input to the design.

This input stipulates which core the arbiter should grant memory access to in the

next cycle. JasperGold tries all possibilities for this input, resulting in all possible

switching scenarios between cores being examined when verifying properties generated

by RTLCheck. The arbiter accounts for the pipelined nature of the V-scale memory;

in other words, it can allow one core to start a request to memory in its DX stage

while another core is receiving data from or sending data to memory in its WB stage.

Figure 3.14 shows an example of this pipelining.

In addition to making V-scale multicore, I also added halt logic and a halt instruc-

tion to the V-scale implementation. This halt logic lets a thread be stopped once it

has executed its instructions for a litmus test. (At the time, the RISC-V ISA did not

have a halt instruction that I could have used.)

114

3.7.3 Modelling Multi-V-scale in µspec

I modelled our Multi-V-scale processor in µspec by having one node per instruction per

pipeline stage (i.e. one each for IF, DX, and WB respectively). I included Figure 3.8’s

axiom, which states that loads must read from the last store to their address to

complete its WB stage, or from the initial state of memory. This axiom should hold

since stores write to and loads read from the same memory. I also included an axiom

enforcing a total order on the DX stages of all memory instructions. This axiom is

enforced by the arbiter allowing only one core to access memory at a time while the

others stall in DX. I also included properties such as the one in Figure 3.3b stating that

the pipeline stages were in-order. Another axiom I added required a total order on

all writes to the same address (enforced through the arbiter’s total order on memory

operations). Figure 3.3a depicts an example µhb graph showcasing the edges added

by some of these axioms.

3.8 RTLCheck Methodology and Usage Flows

RTLCheck’s Assertion Generator and Assumption Generator are written in Gallina,

the functional programming language of the Coq proof assistant [Coq04]. As with

PipeCheck, I use Coq’s capability to be extracted to OCaml to generate an OCaml

version of RTLCheck that can be compiled and run as a standalone binary.

RTLCheck’s generated assertions and assumptions are output as a single file per

litmus test, taking only a few seconds per test. A shell script uses these files to

create litmus-test-specific top-level modules of Multi-V-scale which are comprised of

the implementation of the top-level module concatenated with all the assertions and

assumptions for that specific litmus test. I based my changes to V-scale to make it

multicore off commit 350c262 in the V-scale git repository [Mag16].

115

3.8.1 RTLCheck Methodology

RTLCheck uses JasperGold [Cad15b] to verify the SV assertions subject to the SV

assumptions for a given litmus test. JasperGold compiles the RTL implementation

and any SVA property to be proven on the RTL into finite automata, with state

transitions at clock cycle boundaries. A property is valid with respect to the RTL if

all execution traces that can be generated by the RTL satisfy the property [CDH+15].

For each property, JasperGold may: (i) prove it for all possible cases, (ii) find a

counterexample, or (iii) prove it for all traces shorter than a specified number of cycles

(bounded proof).

JasperGold has a variety of different proof engines which are tailored to different

purposes. These engines employ SAT (satisfiabililty) and BDD (binary decision

diagram)-based approaches to prove the correctness of properties [Cad16]. Section 3.9

discusses my findings regarding the suitability of various engines for RTLCheck.

When verifying properties, JasperGold takes in a Tcl script as its configuration,

which includes the choice of engines to use, how long to allot for the overall verification,

and how often to switch between properties when verifying. I use a shell script to

generate a Tcl script from a template for each litmus test. The Tcl scripts include

a reference to the top-level module for their specific litmus test in the files provided

to JasperGold for verification. The test-specific scripts and top-level modules allow

instances of JasperGold to be run in parallel for different tests on the same Verilog

design without duplication of most of the Verilog RTL. I ran instances of JasperGold

on the Multi-V-scale design across litmus tests on a 224-node Intel cluster, allotting

5 cores and 64-120 GB of memory per litmus test (depending on the configuration

used). I use a suite of 56 litmus tests, comprised of a combination of hand-written

tests from the x86-TSO suite [OSS09] and tests automatically generated using the

diy framework [diy12]. Section 3.9 gives verification results.

116

3.8.2 RTLCheck Usage Flows

As Section 3.1 mentions, RTLCheck can be used in one of two ways. If the RTL for

a processor exists and a user is creating a µspec model for this existing processor,

RTLCheck can be used to verify the soundness of the µspec model with respect to the

RTL for suites of litmus tests. On the other hand, if the user created a µspec model

of their processor prior to writing its RTL, RTLCheck can be used to verify that the

eventual RTL maintains the axioms of that µspec model for suites for litmus tests.

RTLCheck’s operation is exactly the same for both use cases; the only difference

is how the user should interpret results from the SVA verifier. If verifying soundness,

the RTL specifies the desired behaviour and the µspec axioms must correspond to this

behaviour. Thus, if JasperGold returns a counterexample to a generated SVA property

in this use case, the user must modify their µspec axioms to correctly correspond to

the RTL. On the other hand, if verifying RTL, the µspec axioms specify the desired

behaviour and RTL must maintain the orderings specified by these axioms. So if

JasperGold returns a counterexample to an SVA property in this scenario, the user

should modify their RTL to correctly maintain the orderings specified by the µspec

axioms.

3.9 Results

This section presents the results of my evaluation of the Multi-V-scale processor RTL.

I first discuss a bug I found, and then present RTLCheck runtimes under different

JasperGold configurations to compare engines.

3.9.1 Bug Discovered in the V-scale Processor

In my evaluation of Multi-V-scale, JasperGold reported a counterexample for a

property verifying the Read Values axiom (Figure 3.8) for the mp litmus test. This

117

Core[0].DX

Core[0].WB

Core[1].DX

Core[1].WB

clk

Core[1].LData

St x

St x

St y

St y

Ld y

Ld y

Ld x

Ld x

0x1 0x0

Core[0].SData 0x1 0x1

2 3 4 5 6 7

Mem.wdata 0x1 0x1

Mem[x] 0x0

0x0

Mem[y] 0x0

Mem.bypass

1

2

3

Figure 3.15: An execution of mp showcasing the bug RTLCheck found in the memory
implementation of V-scale. The store to x is dropped by the memory, resulting in the
subsequent load of x returning an incorrect value of 0.

property checks that each read returns the value of the last store to that address that

completed WB (provided the read did not occur prior to all writes). Investigating the

counterexample trace, I discovered a bug in the memory implementation of the V-scale

processor. Namely, if two stores are sent to memory in successive cycles, the first of

the two stores is dropped by the memory. The V-scale memory presents a ready signal

to the pipeline (or in the multicore case, to the arbiter), and the implementation

currently hard-codes this signal to be high. This hard-coded value implies that the

memory is ready to accept a new value to be stored every cycle, and so the dropping

of values is a bug. This bug would occur even in a single-core V-scale.

Internally, the memory clocks data from stores into a register wdata, and only

writes the contents of wdata to the address of the store in memory when another store

initiates a transaction. If a load requests data from the address whose latest store is

118

in wdata, the data is bypassed to the load by the memory. Thus, wdata functions in

a manner akin to a single-entry store buffer.

Figure 3.15 shows a counterexample trace which violates the RTLCheck-generated

property. Here, the two stores of mp (to x and y) initiate memory transactions in cycles

2 and 3 respectively. The wdata register is consequently updated to 1 in cycles 4 and

5, one cycle after the stores provide their data values. However, when the second store

initiates its transaction at cycle 3, the memory implementation incorrectly pushes the

value of wdata from cycle 3 into memory at address x (arrow 1 in Figure 3.15) to

make room in wdata for the store of y. At cycle 3, wdata has not yet been updated

with the data of the store to x, so x gets incorrectly set to 0 in memory. The data

of the store to y is then clocked into wdata at the start of cycle 5, overwriting the

data of the store to x and causing it to be lost. When the load of y occurs, it gets its

value bypassed from wdata (arrow 2 in Figure 3.15). This is because no subsequent

store has occurred to push the contents of wdata to memory. Meanwhile, the load

of x returns the value of memory at address x (arrow 3 in Figure 3.15), which is

incorrectly 0, violating the property.

I corrected the dropping of stores by eliminating the intermediate wdata register.

Instead, I clock a store’s data directly into memory one cycle after the store does its

WB stage. Load data is combinationally returned in WB as the value of memory at

the address the load is accessing. This organization allows data written by a store in

one cycle to be read by a load in the next cycle. Once I fixed the bug, JasperGold was

able to completely prove or provide a bounded proof for all RTLCheck’s generated

assertions. This bug was also independently reported [com16], but that report does

not correctly diagnose the bug as only occurring upon successive stores. RTLCheck’s

counterexample trace offered detailed analysis to pinpoint the bug’s root cause.

This example highlights an interesting and important use case for RTLCheck: it is

most directly intended to catch memory ordering bugs, but it is also able to catch bugs

119

that fall on the boundary between memory consistency bugs and more basic module

correctness issues. This is because formal verification of RTL takes into account

all signals that may affect the property being checked, whether they are explicitly

modeled at the microarchitectural level or not. Thus, any behavior that causes the

property to be invalidated for a litmus test will be flagged as a counterexample by a

property verifier checking assertions generated by RTLCheck.

3.9.2 RTLCheck Runtimes

I ran the properties generated by RTLCheck under the JasperGold commercial RTL

verifier for the 56 litmus tests in the suite I used. JasperGold has many configuration

options and solver settings. The size of the configuration space precludes an exhaustive

discussion, but I present results for two options.

Table 3.1 provides the details of the configurations. Each configuration spends one

hour trying to verify tests by finding covering traces for assumptions (see Section 3.6.1),

and then runs proof engines on the assertions for the remaining 10 hours. The Hybrid

configuration uses a combination of bounded engines (which aim to prove correctness

up to a bounded number of cycles) and engines which aim to find full proofs, and

also utilizes JasperGold’s autoprover. The second configuration (Full Proof) uses

exclusively full proof engines. These engines can theoretically improve the percentage

of proven properties, potentially at the cost of increased runtime.

Figure 3.16 presents the runtime to verification of JasperGold for the 56 litmus

tests in the suite. For the 23 tests where assumptions were proven to be unreachable

through covering traces, the runtime to verification is simply the time taken to check

the assumptions. This time can be quite small, as seen for tests like lb, mp, n4, n5,

and safe006, which are verified in under 4 minutes by either configuration. For tests

where assumptions were not found to be unreachable, the total runtime is either the

time taken to prove all properties, or the maximum runtime of 11 hours per test (if

120

02468

1
0

1
2

amd3

co-iriw

co-mp

iriw

iwp23b

iwp24

lb

mp+staleld

mp

n1

n2

n4

n5

n6

n7

podwr000

podwr001

rfi000

rfi001

rfi002

rfi003

rfi004

rfi005

rfi006

rfi011

rfi012

rfi013

rfi014

rfi015

rwc

safe000

safe001

safe002

safe003

safe004

safe006

safe007

safe008

safe009

safe010

safe011

safe012

safe014

safe016

safe017

safe018

safe019

safe021

safe022

safe026

safe027

safe029

safe030

sb

ssl

wrc

Mean

Time (hours)

H
yb

ri
d

Fu
ll_

P
ro

o
f

F
ig

u
re

3.
16

:
J
as

p
er

G
ol

d
ru

n
ti

m
e

fo
r

te
st

ve
ri

fi
ca

ti
on

ac
ro

ss
al

l
56

te
st

s
an

d
b

ot
h

en
gi

n
e

co
n
fi
gu

ra
ti

on
s.

0

2
0

4
0

6
0

8
0

1
0

0

amd3

co-iriw

co-mp

iriw

iwp23b

iwp24

lb

mp+staleld

mp

n1

n2

n4

n5

n6

n7

podwr000

podwr001

rfi000

rfi001

rfi002

rfi003

rfi004

rfi005

rfi006

rfi011

rfi012

rfi013

rfi014

rfi015

rwc

safe000

safe001

safe002

safe003

safe004

safe006

safe007

safe008

safe009

safe010

safe011

safe012

safe014

safe016

safe017

safe018

safe019

safe021

safe022

safe026

safe027

safe029

safe030

sb

ssl

wrc

Mean

% Proven Properties

H
yb

ri
d

Fu
ll_

P
ro

o
f

F
ig

u
re

3.
17

:
P

er
ce

n
ta

ge
of

fu
ll
y

p
ro

ve
n

p
ro

p
er

ti
es

(i
n

a
m

ax
.

of
11

h
ou

rs
)

ac
ro

ss
al

l
56

te
st

s
an

d
b

ot
h

en
gi

n
e

co
n
fi
gu

ra
ti

on
s.

121

Config
Covering

Trace Run
Proof Engine Runs

Memory/
Test

Cores/
Test

Hybrid 1 hour Autoprover (1 hr)
K I N AM AD (9 hrs)

64 GB 5

Full Proof 1 hour I N AM AD (10 hrs) 120 GB 5

Table 3.1: JasperGold configurations used when verifying Multi-V-scale with
RTLCheck.

some properties remained unproven). The average runtime is 6.1 hours per test for

the Hybrid configuration and 6.0 hours per test for the Full Proof configuration. The

total CPU time for the Hybrid run is 2080 hours, and that of the Full Proof run is

2138 hours. Both runs used 5 threads per test.

Figure 3.17 shows the percentage of all assertions generated by RTLCheck that

JasperGold was able to find complete proofs for within the time limits provided for

the 56 litmus tests. In most cases, the Full Proof configuration can find complete

proofs for an equivalent or higher number of properties than the Hybrid configuration

can. However, there are tests where the Hybrid configuration does better, such as n1,

n6, and rfi013. On average, the Hybrid configuration was able to completely prove

81% of the properties per test, while the Full Proof configuration found complete

proofs for 90% of the properties per test. Overall, the Hybrid configuration found

complete proofs for 81% of all properties, while the Full Proof configuration found

complete proofs for 89% of them. Given that the average runtime of the Full Proof

configuration is slightly lower than that of the Hybrid configuration, using exclusively

full proof engines has clear benefits as it can find complete proofs for a larger fraction

of the properties.

For properties that were not completely proven, JasperGold provides bounded

proofs instead. The average bounds for such properties for the Hybrid and Full Proof

configurations were 44 and 23 cycles respectively. As litmus tests are relatively

short programs, many executions of interest fall within these bounds, giving the user

considerable confidence that the implementation is correct.

122

3.10 Related Work on Formal RTL Verification

Aagaard et al. [ACDJ01] propose a framework for microprocessor correctness state-

ments that compares specification and implementation state machines. They also

propose a formal verification methodology [AJM+00] for datapath-dominated hardware

using a combination of lightweight theorem proving and model checking, integrated

within the FL functional language.

There has been work in the CAD/CAV communities on assertion-based verification

(ABV) [TS08, YL05]. However, there is no prior work (to my knowledge) on using

such assertions for multicore MCM verification. In addition, such work focuses on

handwritten assertions, in contrast to RTLCheck’s automatic assertion and assump-

tion generation. In that regard, RTLCheck is closer to the ISA-Formal verification

methodology created by Reid et al. [RCD+16] to verify ARM microprocessors. They

use a processor-specific abstraction function (similar to RTLCheck’s node mapping

function) which extracts architectural state from microarchitectural state, and check

correctness by comparing the difference in the architectural state before and after an

instruction executes/commits with what a machine-readable specification says the

instruction should do to architectural state. They do not verify the entire design. For

instance, the memory subsystem and floating-point units are not verified, and they do

not address memory consistency issues.

Pellauer et al. [PLBN05] provide a method for synthesizing SVA into finite state

machine hardware modules, which can then check for the desired behavior as the

processor runs. Stewart et al. [SGNR14] proposed DOGReL, a language for specifying

directed observer graphs (DOGs). These DOGs describe finite state machines of

memory system transaction behavior. Users also define an abstractor per interface

(similar to RTLCheck’s node mapping function) that interprets signal-level activity as

transaction-level events, whose properties can then be verified. DOGReL compiles

down to RTL and SVA, similar to RTLCheck. However, RTLCheck specifically focuses

123

on MCM properties in multiprocessors, which are not discussed in the DOGReL paper.

In addition, RTLCheck’s µhb graphs represent executions while DOGs represent finite

state machines.

Kami [VCAD15,CVS+17] (Section 2.3.4) enables users to create processor imple-

mentations based on labelled transition systems (LTSes) and then manually prove the

MCM correctness of such processors across all programs. Kami includes an automated

process for extracting a Bluespec hardware implementation from such a proven-correct

Kami implementation. To date, Kami proofs of MCM correctness have only been

demonstrated for SC. While RTLCheck proves correctness for litmus tests rather than

all programs, its methodology is capable of handling arbitrary RTL designs that may

implement a variety of ISA-level memory models, not just SC. Furthermore, RTLCheck

does not require complicated manual proofs like Kami does, and RTLCheck does not

require the design to be written in Bluespec to be synthesizable.

3.11 Chapter Summary

The microarchitectural MCM verification conducted by tools like PipeCheck [LPM14,

LSMB16] and PipeProof (Chapter 5) is adept at discovering MCM bugs in early-stage

design ordering specifications. Similarly, the herd framework [AMT14] enabled the

formal specification and automated formal analysis of ISA-level MCMs (Section 2.3.1).

However, the prior disconnection of such techniques from RTL verification impeded

the ability of such tools to ensure the correctness of taped-out chips. If constructing a

µspec model for an existing processor, there was no way to formally check whether

the µspec ordering specification was a sound representation of the underlying RTL.

Similarly, if writing RTL for a design whose orderings had previously been specified

as a µspec model, there was no way to formally check whether the RTL matched the

124

ordering requirements of the µspec axioms. Both of these use cases require a way to

translate µspec axioms to equivalent RTL properties.

This chapter addresses the above issues by developing RTLCheck, a methodology

and tool for the automatic translation (given appropriate mapping functions) of µspec

axioms to SVA assertions and assumptions for suites of litmus tests. RTLCheck

bridges the gap between the starkly different logics and semantics of µspec and SVA to

accomplish its translation. RTLCheck also works around an over-approximation used

by SVA verifiers that provides improved performance but makes the translation of

µspec to SVA harder. The assertions generated by RTLCheck can be formally verified

against an RTL implementation using commercial verifiers like Cadence JasperGold,

giving architects and engineers confidence that their RTL and µspec axioms are in

agreement. In combination with PipeProof (Chapter 5) which links herd ISA-level

MCMs to µspec models, RTLCheck also enables the formal linkage of herd ISA-level

MCMs to Verilog RTL.

RTLCheck’s translation enables the MCM verification of processor implementations

written in Verilog RTL. Its translation also enables the soundness verification (on

a per-test basis) of microarchitectural specifications with respect to the processor

implementations that they model. RTLCheck’s linkage of early-stage design ordering

specifications to that of RTL implementations helps propagate the early-stage correct-

ness guarantees of tools like PipeCheck and PipeProof to the taped-out chips that

are eventually shipped to end users. Furthermore, it enables the post-implementation

verification required by a progressive verification flow (Chapter 6) for MCM prop-

erties in parallel processors. RTLCheck is open-source (apart from the commercial

JasperGold verifier) and is available at github.com/ymanerka/rtlcheck.

125

Chapter 4

Scalable MCM Verification

Through Modularity1

The empire, long divided, must unite; long united,
must divide. Thus it has ever been.

—Luo Guanzhong (tr. Moss Roberts)
Three Kingdoms

The ISA-level MCM of a processor is enforced by a combination of the processor’s

individual components, e.g. its caches, store buffers, pipelines, etc. As such, it makes

intuitive sense to conduct hardware MCM verification by reasoning about the orderings

enforced by various processor components all at once. However, modern processors

are incredibly complex heterogeneous parallel systems, consisting of a vast number

of components. Meanwhile, the SAT and SMT solvers used by automated MCM

verification approaches like PipeCheck are NP-complete [Coo71], so once the query

provided to the solver grows beyond a certain size, runtime and/or memory usage

tends to explode. As such, the monolithic verification of approaches like PipeCheck

does not scale to detailed models of commercial designs.

1An earlier version of the work in this chapter was previously published on arXiv [MLM20]. I was
first author on the publication.

126

A related challenge in the MCM verification of commercial designs is that each of

the components in such a design may be developed by a distinct team. This makes it

hard to write a monolithic specification detailing the orderings enforced by each of the

components, as PipeCheck requires. Ideally, ordering specification would be modular,

i.e., each team would be able to specify the orderings enforced by their components

independently and then connect them together when conducting MCM verification.

To solve the twin challenges of scalability and specification modularity in hardware

MCM verification, this chapter presents RealityCheck, a methodology and tool for

automated formal MCM verification of modular microarchitectural ordering specific-

ations. RealityCheck allows users to specify their designs as a hierarchy of distinct

modules connected to each other rather than a single flat specification. It can then

automatically verify litmus test programs against these modular specifications. Most

importantly, RealityCheck supports abstracting design modules using interface spe-

cifications. This enables scalable verification by breaking up the verification of the

entire design into smaller verification problems.

4.1 Introduction

Microprocessors today are complex heterogeneous systems developed by many indi-

viduals. Processor development is divided up among different teams, with each team

responsible for one or a few components. For instance, one team may be responsible

for the pipeline, another for the store buffer, a third for the L1 caches, and a fourth

for an accelerator. At the System-on-Chip (SoC) level, components may even be

developed by different companies. Nevertheless, a processor or SoC created by the

interconnection of various components developed by different teams and companies

must function correctly.

127

The conformance of a processor to its MCM is one measure of its correctness. In

prior work, PipeCheck [LPM14,LSMB16] (Section 2.4) enabled automated microar-

chitectural MCM verification for the first time, using model checking (Section 2.2.1)

backed by a custom SMT solver (Section 2.2.1). However, hardware designs are mod-

elled in PipeCheck as a single monolithic specification consisting of all the individual

smaller orderings enforced by the processor’s various hardware components. Such

monolithic verification will not scale to detailed models of large designs like those

of today’s commercial processors due to the NP-completeness of the SAT and SMT

solvers used by such approaches [Coo71].

PipeCheck’s monolithic verification also puts it at odds with the realities of

processor development. The distributed nature of the hardware design process makes

it difficult for processor design teams to write a single monolithic specification for

the entire processor, as PipeCheck requires. Ideally, microarchitectural ordering

specifications would be modular, i.e. each team would be able to specify the orderings

enforced by their components independently as distinct modules with clearly defined

module boundaries. The individual modules would then be connected together when

conducting MCM verification.

PipeCheck’s monolithic verification also leads to a prevalence of omniscient or

global properties in its design specifications. For example, a property guaranteed by

most shared-memory systems today is that of coherence [SHW11]. At an instruction

level, coherence requires that there exists a total order on all stores to the same address

that is respected by all cores in the system. However, hardware implementations

of coherence use distributed protocols where each cache (and often a bus/directory)

is responsible for enforcing part of the orderings required. None of the hardware

components in such an implementation has omniscient visibility of the entire processor,

and none of them can make statements about the global behaviour of the system.

Thus, omniscient properties such as the coherence definition above reflect a designer’s

128

Core
0

Core
2

Core
1

Core
3

L1L1L1L1

Main Memory

ProcessorProcessor Processor
Core

0
Core

2
Core

1
Core

3

L1L1L1L1

Main Memory

MemoryHierarchy

Processor
Core

0
Core

2
Core

1
Core

3

AtomicMemory

(a) Flat specification (d) Adding Abstraction(c) Adding Hierarchy(b) Adding Modularity

Core
0

Core
1

Core
2

Core
3

L1 L1 L1 L1

Main Memory

Figure 4.1: Illustration of adding modularity, hierarchy, and abstraction to a flat
design specification. The flat design specification in (a) does not incorporate any of the
structural modularity and hierarchy present in today’s hardware designs. The addition
of modularity in (b) groups individual design components into their own modules,
breaking down the specification into multiple pieces. Hierarchy, shown in (c), enables
larger modules like MemoryHierarchy to be built out of smaller modules. Finally, (d)
demonstrates the use of abstraction by using an interface AtomicMemory to abstract
the module MemoryHierarchy. This decouples the specification of MemoryHiearchy’s
implementation from the specification of its external behaviour.

high-level view of the hardware rather than what the hardware is actually doing. If

the designer’s high-level view is inaccurate, verification using such a specification will

be unsound.

As this chapter will show, each of the above problems can be solved by developing an

automated microarchitectural MCM verification methodology that incorporates three

well-known concepts: modularity, hierarchy, and abstraction. Figure 4.1 shows

a graphical depiction of these concepts in relation to hardware MCM verification.

PipeCheck provides flat verification (Figure 4.1a). There is no way for users to

encapsulate component functionality into a unit whose properties only apply to that

unit, or to verify a component independently of the rest of the system. In other

words, there is no support for modularity as it is depicted in Figure 4.1b. Similarly,

users could not build larger modules from smaller ones as there was no support for

hierarchy. Figure 4.1c shows an example of hierarchy where the L1 and Main Memory

modules reside within the MemoryHierarchy module.

PipeCheck also has no support for abstraction. In other words, there is no way

for users to decouple the specification of their component’s external behaviour from the

specification of its implementation. As an example of abstraction, Figure 4.1d repres-

129

ents the MemoryHierarchy using an abstract interface AtomicMemory. AtomicMemory

specifies the external-facing behaviour of the memory hierarchy, but says nothing

about the internal implementation, like how many caches there are.

To enable scalable automated microarchitectural MCM verification that is in line

with the realities of processor design, this chapter presents RealityCheck, a method-

ology and tool for automated formal MCM verification which supports modularity,

hierarchy, and abstraction. RealityCheck allows users to specify their design as a

hierarchy of distinct modules connected to each other (similar to an object-oriented

programming language like C++), closely matching the structure of real hardware

designs. RealityCheck can then automatically verify whether the composition of the

various modules exhibits behaviours forbidden by the ISA-level MCM of the processor

through bounded verification for suites of litmus test programs. RealityCheck also

lets users write interface specifications of the external behaviour of components; it

can then verify component implementation specifications against these interfaces up

to a bound. The use of such abstraction in concert with modularity and hierarchy

allows a design to be verified piece-by-piece, breaking down verification of the entire

design into smaller verification problems. This allows automated microarchitectural

MCM verification to scale to large designs like those of commercial processors. Finally,

RealityCheck fulfills the requirement for detailed design verification in a progressive

verification flow (Chapter 6) for MCM properties in parallel processors.

The only prior hardware MCM verification work that supports modularity, hier-

archy, and abstraction is Kami [VCAD15,CVS+17] (Section 2.3.4). While Kami can

prove MCM correctness across all possible programs (which RealityCheck cannot),

these proofs must be written manually in a framework in the Coq proof assistant

(Section 2.2.2). This requires significant manual effort and formal methods knowledge.

Thus, Kami is unsuitable for use by typical computer architects, as they do not have

130

Core 0 Core 1

(i1) [x] ← 1 (i3) [y] ← 1

(i2) r1 ← [y] (i4) r2 ← [x]

SC forbids r1=0, r2=0

Figure 4.2: Code for litmus test sb

such formal methods expertise. In contrast, RealityCheck is an automated tool that

is easy to use while still providing modularity, hierarchy, and abstraction.

The rest of this chapter is organised as follows. Section 4.2 uses a concrete example

to illustrate the issues caused by PipeCheck’s lack of modularity, hierarchy, and

abstraction. Section 4.3 provides an overview of RealityCheck. Section 4.4 covers

abstraction and its benefits in the context of RealityCheck, including how it enables

scalable verification when used in combination with modularity and hierarchy. Sec-

tion 4.5 covers µspec++, a domain-specific language developed as part of RealityCheck

to enable the creation of hierarchical modular microarchitectural ordering specifica-

tions. µspec++ extends the µspec domain-specific language of PipeCheck [LSMB16]

(Section 2.4.2) to incorporate modularity, hierarchy, and abstraction. Section 4.6

covers RealityCheck’s operation, while Section 4.7 provides examples of the different

ways in which RealityCheck can be used in hardware design flows. Section 4.8 covers

RealityCheck’s methodology and results, and Section 4.9 concludes.

4.2 Motivating Example

4.2.1 Flat Verification using PipeCheck

Figure 4.3 shows a µhb graph (Section 2.4.1) depicting the execution of the sb litmus

test (Figure 4.2) on the microarchitecture represented by Figure 4.1b (henceforth called

exampleProc). Assume that each core has 3-stage in-order pipelines of Fetch (IF),

Execute (EX), and Writeback (WB) stages, and that the processor aims to implement

SC. As a reminder, in sb, both addresses x and y are initially 0 by convention. Core 0

131

i3 i4

IF

EX

WB

L1ViCL_C

L1ViCL_E

i1 i2

Figure 4.3: Example µhb graph for sb litmus test on Figure 4.1b’s processor.

Axiom "Read_Initial":

forall microop "i", forall microop "j",

IsAnyRead i /\ DataFromInitialState i /\

IsAnyWrite j /\ SameAddress i j =>

AddEdge((i,L1ViCL_E),(j,L1ViCL_C),"").

Figure 4.4: Example µspec axiom.

sets its flag x and reads the value of core 1’s flag y. Meanwhile, core 1 sets its flag

y and reads the value of core 0’s flag x. Under SC, it is forbidden for both loads to

return 0, as there is no total order on all memory operations that would allow this.

The last two rows in the µhb graph (L1ViCL C and L1ViCL E) use the ViCL

(Value in Cache Lifetime) abstraction [MLPM15] to model cache occupancy and

coherence protocol events relevant to MCM verification. Briefly speaking, a ViCL

represents the period of time (relative to a single cache or main memory) over which

a given cache/memory line provides a specific value for a specific address. The time

period referenced by a ViCL begins at a ViCL Create event, and ends at a ViCL

Expire event. A ViCL for a given address in a given cache is created when a cache

line for that address is brought into the cache, or when the value of that address is

updated in the cache. Similarly, a ViCL for a given address in a given cache expires

when the cache line for that address is evicted, or when the value for that address

is updated (which results in the creation of a new ViCL to represent the new value).

132

Figure 4.3 uses L1ViCL C and L1ViCL E to refer to ViCL Create and ViCL Expire

events respectively, for the L1 caches in exampleProc. CCICheck [MLPM15] provides

a formal definition of and further details on ViCLs.

Figure 4.4 shows a µspec axiom (Section 2.4.2) for exampleProc that specifies

some of the orderings enforced by the coherence protocol (Section A.5). This axiom

enforces that for every microop i (a microop is a single load or store), if it is a load

(enforced through the IsAnyRead predicate) that reads from the initial state of memory

(DataFromInitialState i), then its L1 ViCL must expire before the creation of L1

ViCLs of any write j to that address, as the write would have caused the invalidation

of all other cache lines for that address. The loads i2 and i4 in sb both read from the

initial state, so this axiom adds the red edges in Figure 4.3 to enforce the expiration

of their ViCLs before the creation of ViCLs for stores i3 and i1 respectively.

4.2.2 Deficiencies of Flat Verification

Lack of Scalable Verification

µspec specifications that reason over a limited number of nodes and edges per instruc-

tion, such as the µspec specification for exampleProc, can be verified against a litmus

test by PipeCheck in seconds or minutes [LSMB16]. However, commercial processors

are far more complex. While PipeCheck has verified designs of commercial processors

such as the OpenSparc T2 [LPM14] and a Sandy Bridge design [LSMB16], it did so

using high-level organisational models that do not reflect the true complexity of these

designs. These models also used omniscient axioms (explained below), which reflect

architectural intent rather than what the design is actually doing.

If a user wished to use PipeCheck to verify a more detailed model of e.g., a Sandy

Bridge design, the µspec for that model could well deal with hundreds of nodes and

edges per instruction. PipeCheck provides no way to break down the verification of a

133

processor into smaller parts, so its verification of such large µspec specifications would

quickly become infeasible due to the NP-completeness of SMT solving [BSST09].

PipeCheck’s monolithic verification provides no way for users to verify a component

independently of the rest of the system. For instance, all verification in Figure 4.3’s

µhb graph for exampleProc is conducted in terms of instructions, relative to an

ISA-level litmus test. There is no way to verify say, the L1 caches individually. Ideally,

each design component would have an interface specification that it could be verified

against, and it would be possible to verify a design piece-by-piece. This would allow

model checking-based approaches for hardware MCM verification to scale to large

detailed designs.

Lack of Modular Specifications

Writing a detailed µspec specification for a large processor in PipeCheck is itself difficult.

PipeCheck provides no way for users to specify individual hardware components

independently of the rest of the system. There is no way to encapsulate a set of

µspec axioms and the nodes and edges they operate on into a single unit that can be

instantiated and replicated elsewhere in the design (much like classes and objects in

C++ or Verilog RTL modules). For instance, in the case of exampleProc, there is no

way to specify an L1Cache module that details the orderings enforced by a given L1

cache. Instead, the user creates a single monolithic specification containing all the

axioms relevant to the design.

PipeCheck’s monolithic specifications will cause difficulties if PipeCheck is used in

the design cycle of a commercial processor. This is because processors are designed by

a number of distinct teams, with each team responsible for one or a few components.

Each team will have detailed knowledge about their component, and will be well placed

to write axioms for it. However, they may know very little about components designed

by other teams. As PipeCheck specifications are monolithic, users have no way to

134

specify module boundaries to clearly demarcate the connections between modules.

This makes it hard to ensure that the axioms for a given team’s component correctly

interface with the axioms for another team’s component. Such incorrect component

interactions will result in flawed specifications, causing bugs to be missed (false

negatives) or spurious verification failures (false positives). Ideally, each team would

write the axioms for their component as a module with clearly defined boundaries,

and these modules could be instantiated and connected together inside larger modules.

The specification for the overall processor would be created by instantiating and

connecting various modules together according to a specific hierarchy (much like how

processors are written in Verilog RTL today).

Omniscient Axioms

PipeCheck’s flat verification encourages the use of axioms which exercise an omniscient

(or global) view of the entire processor. For instance, Figure 4.4’s axiom adds µhb

edges between ViCLs of Core 0’s L1 and Core 1’s L1 in Figure 4.3 to reflect that the

loads must read memory before the stores invalidate their cache lines through the

coherence protocol. While this axiom is straightforward to write and would be valid

in a coherent memory hierarchy, it does not directly correspond to how the hardware

actually works. The ordering in Figure 4.4’s axiom is actually enforced in a distributed

manner by a combination of modules, specifically the L1s and (likely) a bus or directory.

Each component in a hardware design can only enforce orderings on the events that

it sees. For example, in exampleProc, Core 0’s L1 can observe the values in its own

cache but it cannot see the values in Core 1’s L1. An architect may surmise that the

combination of the orderings enforced by the L1s and bus/directory is sufficient to

enforce Figure 4.4’s axiom, but such an assumption must be validated before using the

axiom for microarchitectural MCM verification. Otherwise it is possible that the axiom

does not hold in the actual hardware design, leading to unsound verification. A better

135

Implementation
Axiom Files

(§ 4.5.1)

Module Definition
Files

(§ 4.5.2)

RealityCheck

Litmus
Test

Interface-
Implementation

Pairs
(§ 4.5.3)

Operation
Assignment

(§ 4.6.2)

Formula
Generation

(§ 4.6.3)

Microarchitecture
Tree Generation

(§ 4.6.1)

Translation
to Z3

(§ 4.6.4)

Z3 SMT
Solver

Graph
Generation

(§ 4.6.4)

Test Unobservable/
Implementation

satisfies Interface
SAT?

Yes
No

Bound

µhb Graph

Figure 4.5: RealityCheck block diagram. Orange parts only apply to interface
verification, and blue parts only to litmus test verification.

MemoryHierarchy

Core1

i3 i4

Internal
Nodes:

Core0

i1 i2Operations:

Core2

i5 i6

External
Nodes

Core3

i7 i8

c0_L1
t1 t2

c1_L1
t3 t4

c2_L1
t5 t6

c3_L1
t7 t8

MainMemory

t9 t10

Processor

Figure 4.6: High-level graphical depiction of RealityCheck’s model of Figure 4.1c’s
processor, showing examples of operations, internal nodes, and external nodes.
MemoryHierarchy’s operations are not shown for brevity.

approach is to allow the teams working on each module to specify the axioms that

actually hold in their modules, and then verify that the composition of the modules

correctly maintains required MCM orderings. However, all axioms in PipeCheck’s

µspec specifications have omniscient visibility of the processor. There is no way for

users to write axioms that are scoped to one portion of the design.

RealityCheck solves the above problems through its approach to modularity,

hierarchy, and abstraction. The next section provides a high-level overview of how it

does so.

136

L1L1L1L1

Main Memory

MemoryHierarchy

AtomicMemory
?

Figure 4.7: Interface verification consists of checking a set of implementation modules
against an abstract interface to verify (up to a bounded number of operations) whether
the implementation modules satisfy the interface specification. This figure depicts the
interface verification of the MemoryHierarchy module and its constituent submodules
against the AtomicMemory interface.

4.3 RealityCheck Overview

Figure 4.5 shows the high-level block diagram of RealityCheck. RealityCheck can be run

in one of two ways: (i) for litmus test verification to verify a modular microarchitectural

ordering specification against an ISA-level MCM specification for a specific litmus test,

or (ii) for interface verification to verify the microarchitectural ordering specification

of design components against the ordering specification of their abstract interfaces

(Section 4.4). The latter use case enables a module to be verified independently of the

rest of the design. The five steps in RealityCheck operation (Microarchitecture Tree

Generation, Operation Assignment, Formula Generation, Translation to Z3,

and Graph Generation) are common to both litmus test verification and interface

verification. The difference between the two cases lies in which modules are checked

and which operations they are checked on. Operations represent the instructions or

instruction-like quantities that a module operates on. For example, the operations

of a core module would be instructions, but the operations of a memory module

would be memory transactions. Figure 4.6 provides a high-level graphical depiction of

RealityCheck’s basic terms (including operations) for Figure 4.1c’s processor.

Two inputs that are provided to RealityCheck in both litmus test verification and

interface verification are the implementation axiom files and the module definition

files. These files are specified in the µspec++ language (Section 4.5) developed as part

of RealityCheck. The µspec++ language is based on the µspec language [LSMB16]

developed by PipeCheck, but adds support to the language for modularity, hierarchy,

137

and abstraction, much like C++ does to C. The module definition files (Section 4.5.2)

specify µspec++ modules in a manner similar to a C++ .h file. Meanwhile, each

implementation axiom file (Section 4.5.1) specifies the events relevant to a given module

as well as orderings on these events, in a manner similar to a C++ .cpp file. µspec++

prevents users from writing omniscient axioms that violate the visibility constraints of

the structure of their design (Sections 4.5.1 and 4.5.2). It also accomplishes translation

from ISA-level litmus tests into the operations of lower-level modules using connection

axioms (Section 4.5.2) and appropriate operation assignment (Section 4.6.2).

If verifying a litmus test, the test is provided as input in the .test format from

prior work [LSMB16]. Meanwhile, if running interface verification, RealityCheck takes

in a list of implementation-interface pairs. Each pair specifies an implementation

module to verify against an interface specification, and their corresponding node

mappings (Section 4.5.3).

The final input to RealityCheck (which is always provided to the tool) is the

bound up to which to conduct verification. Similar to most prior automated hardware

MCM verification work [LPM14,MLPM15,LSMB16,TML+17,MLMP17] but unlike

PipeProof (Chapter 5), RealityCheck conducts bounded verification; i.e., it explores

all possible executions that use up to the specified number of operations (per module).

Thus, RealityCheck is excellent for bug-finding, as I show in my case studies in

Section 4.8.4.

4.4 Abstraction and its Benefits

In RealityCheck, interfaces can be used to separate the specification of a component’s

functional behaviour from the details of its implementation. For example, users may

want to abstract the behaviour of their memory hierarchy as a single atomic memory,

as shown in Figure 4.7.

138

The use of interfaces has several benefits. First, any implementation of the interface

can be verified against the interface specification independently of the rest of the

system. This gives users a method to verify the correctness of a design component

without needing to link it to a top-level litmus test. For example, Figure 4.7 shows the

verification of the MemoryHierarchy module and its submodules (instances of other

modules that exist within MemoryHierarchy) against the AtomicMemory interface.

Interface verification enables easy localisation of bugs to a given module based on

whether it satisfies its interface. Second, the use of interfaces facilitates sharing of IP

blocks between vendors. A vendor can internally verify their implementation against

its interface for correctness, and then share their interface with other vendors without

having to share their internal implementation specification. Third, interfaces enable

scalable verification. Instead of verifying the entire design at once (Figure 4.1c), which

will likely result in an SMT formula too large for solvers to handle, interfaces enable

verification to be split into multiple steps. Specifically, the design is first verified using

the (likely) smaller and simpler interface specification of the component (Figure 4.1d)

rather than its implementation. Then, the component implementation is separately

verified against the interface specification up to a user-provided bound (Figure 4.7).

These two verification queries can be run in parallel, and will likely be smaller SMT

formulae than verifying the design all at once. This process can be repeated further

down the hierarchy. For instance, if the L1 caches in Figure 4.7 had interfaces, those

interfaces could be used when conducting interface verification in Figure 4.7. The L1

implementation could then be separately verified against its interface specification.

This splitting of verification queries using interfaces can be done again and again to

split verification into smaller problems, thus allowing it to scale.

Finally, interfaces allow implementations to be switched in and out easily. For

example, if the user wants to introduce a new memory hierarchy (say, one with an L2

cache) to a previously verified version of Figure 4.1d, then all they need to do to ensure

139

ModuleID "Core".

DefineEvent 0 "IF".

DefineEvent 1 "EX".

DefineEvent 2 "WB".

DefineEvent External 3 "MemReq".

DefineEvent External 4 "MemResp".

Axiom "PO_Fetch":

forall microop "i1",

forall microop "i2",

ProgramOrder i1 i2 =>

AddEdge ((i1, IF), (i2, IF), "").

Axiom "Req_Resp_PO":

forall microop "i1",

forall microop "i2",

EdgeExists ((i1, WB), (i2, WB), "") /\

NodesExist [(i1, MemResp); (i2, MemReq)] =>

AddEdge ((i1, MemResp), (i2, MemReq),"").

Figure 4.8: Part of simpleProc’s Core module’s implementation axiom file.

design correctness is to verify the new memory hierarchy against the AtomicMemory

interface, independently of the rest of the design.

4.5 µspec++ Modular Design Specifications

This section explains the µspec++ domain-specific language using a pedagogical

microarchitecture simpleProc, comprised of 3-stage pipelines connected to a single

main memory.

4.5.1 Implementation Axiom Files

Each implementation axiom file specifies the events relevant to a given module.

Figure 4.8 shows part of the implementation axiom file for a module of type Core.

The file begins with the module’s type, and is followed by a list of the types of

events that this module can observe and/or enforce orderings on, denoted using

140

DefineEvent. The rest of the file details the axioms which enforce various orderings

on these events. Figure 4.8 shows two such axioms, PO Fetch and Req Resp PO.

These axioms are identical in syntax to the corresponding µspec axioms, but they

only enforce orderings on the operations of the module in which they are declared.

For example, if evaluating Figure 4.2’s litmus test on a µspec++ design, an instance

of the Core module representing Core 0 would only be able to see instructions i1

and i2 rather than all the instructions of the litmus test. In such a case, the forall

quantifiers in the PO Fetch axiom would evaluate to an AND over instructions i1

and i2.

By default, events can only be viewed by the module instance in which they are

declared, similar to private member variables in C++. For example, the IF and

WB events in an instance of the Core cannot be seen outside that instance. If users

write axioms in other modules that reference these events, RealityCheck will flag

an error when parsing their specification, since these events are not visible outside

the Core module. This capability allows designers to hide events internal to their

design component from other modules in the system, just like in a real Verilog design.

Since omniscient axioms (Section 4.2.2) by definition look at the internal events

of other modules, they are illegal in such a setup. Thus, if users organise their

microarchitectural ordering specifications into modules that reflect the structure of

their design, RealityCheck will automatically prevent them from writing omniscient

axioms that violate this design structure.

Meanwhile, a module’s external events can be viewed by itself as well as by its

parent module and any modules it may be connected to (see Section 4.5.2 for further

details). Such events are labelled with the External keyword when they are declared

in the implementation axiom file. For example, the MemReq and MemResp events in

Figure 4.8’s Core module are both external events. Thus, if the Req Resp PO axiom

adds an edge between the MemResp and MemReq nodes of two instructions, that edge

141

Module Processor () {

OperationType none

Properties { IsCore no }

Submodules {

Core c0 (c : 0)

Core c1 (c : 1)

Core c2 (c : 2)

Core c3 (c : 3)

Mem mem ()

}

ConnectionAxioms {

Axiom "instr_has_tran":

forall microop "i" in "c0;c1;c2;c3",

NodeExists (i, MemReq) =>

exists transaction "j" in "mem",

Mapped i j.

...

Axiom "mapped_effects":

forall microop "i" in "c0;c1;c2;c3",

forall transaction "j" in "mem",

Mapped i j =>

(SameAddress i j /\ SameData i j /\

(IsAnyRead i <=> IsAnyRead j) /\

(IsAnyWrite i <=> IsAnyWrite j) /\

SameNode (i, MemReq) (j, Req) /\

SameNode (i, MemResp) (j, Resp)).

}}

Figure 4.9: simpleProc’s Processor module definition.

will be visible outside the instance of the Core module in which the instructions reside.

Figure 4.6 shows a graphical depiction of internal and external events/nodes.

4.5.2 Module Definition Files

Figure 4.9 shows the module definition of simpleProc’s top-level Processor module.

A module definition file specifies the module’s operation type, properties, submodules,

and connection axioms.

142

Axiom "Mem_Writes_Path":

forall transaction "i",

NodeExists (i, Req) /\ IsAnyWrite i =>

AddEdges [((i, Req), (i, ViCL_C), "");

((i, ViCL_C), (i, ViCL_E), "");

((i, ViCL_C), (i, Resp), "")].

Figure 4.10: An implementation axiom of simpleProc’s Mem.

Operation Types and Properties

The operations in each module have some type, specified using the OperationType

keyword. For example, simpleProc’s Core module has an operation type of microop,

since it deals with instructions, while the Mem module has an operation type of

transaction. Users can add additional operation types. The Processor module in

Figure 4.9 has an operation type of none, a special identifier indicating that it has

no operations. This is because the Processor module serves only to encapsulate the

other modules in the system.

When quantifying over operations, RealityCheck verifies that the operation type

used in the quantifier matches that of the operations over which the quantifier is being

evaluated. So for instance, if the first forall quantifier in Figure 4.8’s PO Fetch

axiom was replaced with forall transaction "i1", RealityCheck would flag a type

error.

A module’s properties are certain fields that are shared across all instances of the

module, similar to static variables of classes in C++. An example of a property is the

IsCore property, which can be set to yes or no. RealityCheck uses this property in

order to detect which modules are pipeline modules and thus should have litmus test

instructions assigned to them when conducting litmus test evaluation.

Submodules

The submodules of a module are instances of other modules that exist within it.

Submodules enable hierarchy in RealityCheck, allowing larger modules to be built

143

(a)

(b)

IF

EX

WB

MemReq

MemResp

i1 i2

IF

EX

WB

MemReq/
Req

ViCL_C

ViCL_E

MemResp/
Resp

(c)

i1 i2

t1 t2

Req

ViCL_C

ViCL_E

Resp

t1 t2

Figure 4.11: Effect of connection axioms in simpleProc, assuming 3-stage pipelines.
(a) shows two stores in program order from a Core, while (b) shows two transactions
from Mem. (c) shows the result when connection axioms merge the MemReq and
MemResp nodes of Core with the Req and Resp nodes of Mem. Black nodes are internal
nodes while red and blue nodes are external nodes. Dotted nodes and edges are not
guaranteed to exist. Merged nodes are concentric circles.

using smaller ones. A module can evaluate µspec++ predicates on the operations of

its submodules and observe their external events, but it cannot observe their internal

events.

When instantiating a submodule, parameters may be passed to the instance to

populate some instance-specific fields (similar to how parameters are passed to a

constructor in C++). For example, when the Processor module instantiates Core

modules as its submodules, it passes each of them an integer parameter c denoting

their core ID. This parameter can then be used in the axioms of that module.

144

Connection Axioms

Submodules are connected to each other and to their parent module through connection

axioms. The bottom of Figure 4.9 shows two example connection axioms. Connection

axioms are similar to implementation axioms (Section 4.5.1), but have differences

in their visibility. A module’s connection axioms can observe the operations of the

module itself and those of its submodules. They can observe all events of their module

(both internal and external), but only the external events of any submodules.

Since connection axioms can observe the operations of multiple modules, their

quantifiers must specify the domain over which they operate. Each quantifier provides

a list of modules whose operations it applies to (this refers to the operations of the

module itself). For example, the forall quantifier in the instr has tran axiom is

evaluated on the operations from modules c0, c1, c2, and c3. Thus, the quantifier

evaluates to an AND over all these operations, but does not apply to the operations

in the mem module. Likewise, the exists quantifier in instr has tran applies only

to the operations in the mem module.

Connection axioms are responsible for translating one module’s operations to those

of another, and for linking them together. For example, if a core is connected to memory,

the core’s instructions need to be translated and mapped to their corresponding

memory transactions. Furthermore, there may be multiple possible translations for a

given litmus test, e.g. a load may read from the store buffer in one execution (and

thus generate no memory transactions), while in another execution it may read from

memory, thus generating a memory transaction.

By checking all the different ways the connection axioms could be satisfied, Reali-

tyCheck examines all possible translations of operations between modules. For example,

the instr has tran axiom in Figure 4.9 maps each instruction on the four cores

which requests data from memory (signified by the existence of its external MemReq

node) to some transaction in mem, denoted by the Mapped predicate. This reflects how

145

in a real design, an instruction in the pipeline that accesses memory will generate a

corresponding memory transaction. Other axioms not shown ensure that the mapping

between instructions and memory transactions is 1-1. Mapping schemes other than

1-1 can be used where necessary; for instance, if a 64-bit load instruction is performed

using two 32-bit read transactions.

If operations are mapped to each other 1-1, mapped pairs must agree on which

addresses, values, etc are being accessed. They must also agree on the timing of their

events. For example, the second connection axiom (mapped effects) in Figure 4.9

enforces some of these orderings. It enforces that if an instruction is mapped to a

memory transaction, then they must have the same address and read/write the same

data value. It also enforces that load instructions map to read transactions and stores

map to write transactions (through the IsAnyRead and IsAnyWrite predicates). In

addition, it uses the SameNode predicate to link the MemReq event of the instruction i

to the Req event of the transaction j. Likewise, the MemResp event of i is linked to

the Resp event of j.

Linking two nodes with SameNode essentially merges the two nodes together,

ensuring that they are exactly the same event. In this case, the processor’s request to

and response from memory are viewed from the memory side as an arriving request

to which it sends a response. Further details about the semantics of SameNode are

discussed in Section 4.6.4.

A Graphical Example

Figure 4.11 graphically depicts the effect of connection axioms in simpleProc. Black

outlines denote internal nodes. External nodes are outlined in blue (in Core) or red

(in Mem). In Figure 4.11a we have two stores i1 and i2 in program order from an

instance of Core. Note that the MemResp nodes of i1 and i2 are dotted to indicate

that these nodes are not guaranteed to exist. This reflects the fact that a Core cannot

146

just assume that its memory requests will be responded to. The existence of the

MemResp nodes must be enforced by axioms in the Mem module and communicated to

the Core through connection axioms. The implementation axioms of the Core module

in Figure 4.8 obey this convention; for instance, the Req Resp PO axiom does not

add an edge between the MemResp event of i1 and the MemReq event of i2 unless the

MemResp node of i1 exists.

Meanwhile, in Figure 4.11b we have two memory transactions t1 and t2, governed

by the axioms of the Mem module – specifically, the axiom shown in Figure 4.10.

This axiom enforces that if a write request is provided to the Mem module, then it is

responded to. Note that all the nodes of t1 and t2 are dotted, indicating that none

of them is guaranteed to exist. This reflects the fact that in simpleProc, memory

will remain idle unless data is provided to or requested from it. Without connection

axioms, no instructions must interact with memory, and so no nodes or edges in Mem

are guaranteed to exist.

When the connection axioms in Figure 4.9 are enforced, the result is Figure 4.11c,

where instruction i1 is mapped to transaction t1 and instruction i2 is mapped to

transaction t2. The Req node of transaction t1 is now guaranteed to exist, because

it is the same node as i1’s MemReq node (denoted by the concentric blue and red

circles), which is guaranteed to exist by Core. Transaction t2’s Req node is similarly

guaranteed to exist by t2 being mapped to i2. Figure 4.10’s axiom now enforces

that both transactions are responded to, causing the Resp nodes of t1 and t2 to

exist, and thus also causing the MemResp nodes of i1 and i2 to exist (since they are

now merged with the Resp nodes). Finally, since the MemResp node of i1 now exists,

the Req Resp PO axiom of the Core module (Figure 4.8) now enforces (through the

orange edge in Figure 4.11) that the Core must receive i1’s response from memory

before sending i2’s request to memory.

147

Processor

Core c0 Core c1 Core c2 Core c3

MemoryHierarchy memHier

Mem mem

L1 c0_L1 L1 c1_L1 L1 c3_L1L1 c2_L1

Figure 4.12: The microarchitecture tree of Figure 4.1c’s processor.

4.5.3 Interface Specification and Node Mappings

Interfaces are specified in RealityCheck in a manner similar to other modules, but

with some additional constraints. They are declared with the keyword Interface

rather than Module. Interfaces cannot have submodules or connection axioms, as their

goal is to provide a simple specification of component behaviour that does not delve

into implementation details.

When verifying an implementation against an interface, the event types of the

implementation must be mapped to those of the interface, so that the interface’s

properties can be checked on the implementation. Otherwise the interface and

implementation would be referring to different events. For example, if verifying

MemoryHierarchy against AtomicMemory as per Figure 4.7, one might map the request

and response events of the memory hierarchy to the corresponding request and response

events of the atomic memory. This list of node mappings must be provided along

with an interface-implementation pair when it is input to RealityCheck for interface

verification.

4.6 RealityCheck Operation

This section covers RealityCheck’s five main steps (Figure 4.5).

148

4.6.1 Step 1: Microarchitecture Tree Generation

The first step in RealityCheck is Microarchitecture Tree Generation, which

creates a tree of µspec++ module instances (i.e., copies) according to the module

definition files and interface/implementation axiom files. Figure 4.12 shows the

microarchitecture tree for the processor from Figure 4.1c. The root of the tree is a

user-specified top-level module (in this case, the Processor module). The children of

the top-level module are its submodules, which may have submodules of their own.

To generate the microarchitecture tree for a design, RealityCheck first instantiates a

copy of the top-level module, and then recursively instantiates each of its submodules.

4.6.2 Step 2: Operation Assignment

Once the microarchitecture tree is generated, Operation Assignment generates and

assigns operations to each module. The design’s various axioms are subsequently

evaluated over these operations, with the visibility restrictions enforced by µspec++

detailed earlier.

RealityCheck assigns a number of operations to each module equal to the bound

specified by the user as input. For instance, if assigning operations to Figure 4.1b’s

processor for a bound of 4, there would be 4 operations assigned to each of the 4 cores,

each of the L1s, and to main memory, for a total of 16 + 16 + 4 = 36 operations for the

entire design. The bound specified as input to RealityCheck is the maximum number

of operations per module that can exist in any verified execution, so an execution

may use only some of the operations per module. RealityCheck accomplishes this by

associating every operation with an implicit IsNotNull predicate, and enforcing that

axioms only apply to non-null operations. This is the approach used by tools like

Alloy [Jac12].

In litmus test verification, the design’s Core modules (identified by the IsCore

property) are assigned the litmus test instructions corresponding to their core. These

149

litmus test instructions are concrete; their type, address, and value are dictated by the

litmus test and cannot change. However, as Section 4.5.2 covers, verification of the

litmus test must cover all possible translations (up to a bound) of these litmus test

instructions to the operations of lower-level modules. RealityCheck accomplishes this

translation by having operations in modules other than cores be symbolic, and having

connection axioms enforce requirements on them based on the instructions they are

(directly or indirectly) mapped to. Symbolic operations are abstract operations which

can have any type (e.g., read, write, etc), address, or value, as long as the design’s

axioms are maintained. For example, if an operation from the mem module is mapped

to an instruction from one of the Cores, the connection axioms (Figure 4.9) ensure

that the symbolic operation in mem has the same type (read/write), address, and data

as the instruction in the Core, effectively translating the Core’s instruction into a

memory transaction.

Meanwhile, in interface verification, all operations of involved modules are symbolic.

Thus, in that case, RealityCheck verifies that an implementation satisfies its interface

for all possible combinations of operations up to the bound.

4.6.3 Step 3: Formula Generation

In Formula Generation, RealityCheck takes the conjunction of every module’s im-

plementation axioms and connection axioms, grounding quantifiers by translating

foralls into ANDs and exists into ORs over each quantifier’s domain, i.e., the oper-

ations being quantified over. RealityCheck conducts some preliminary simplification

on the resultant representation, and then converts it (as described below) into an

SMT formula checkable by the Z3 SMT solver [dMB08].

150

4.6.4 Steps 4 & 5: Translate to Z3 and Graph Generation

RealityCheck translates AND, OR, and NOT operators to their Z3 equivalents. Each

predicate is mapped to a Z3 Boolean variable, except for SameNode (explained below).

RealityCheck uses Z3’s Linear Integer Arithmetic (LIA) theory to enforce happens-

before orders. Each µhb node has two variables in Z3. The first is a Boolean variable

dictating whether or not the node exists. The second is an integer variable denoting

the timestamp of the node in the microarchitectural execution. An edge from a node

s to a node d is translated to a constraint e s < e d where e s and e d are the

integer variables denoting the timestamps of s and d respectively.

The SameNode predicate requires special handling, as it is not just a Boolean

predicate, but also enforces that two nodes be merged together. If the user declares

two nodes to be the same node in their µspec++, RealityCheck first creates a bi-

implication between their Boolean variables to ensure that if one exists, so does the

other (and vice versa). Then, RealityCheck adds a constraint that the integer variables

denoting the timestamps of the nodes must have the same value. Together, these two

constraints ensure that the two nodes in the SameNode predicate are treated as the

same node.

If Z3 finds a satisfying assignment to the generated formula, the assignment

represents an acyclic graph where nodes with their Boolean variables set to true exist,

and where edges exist between nodes s and d if the integer variable for s is less

than the integer variable for d. In such a case, RealityCheck parses the satisyfing

assignment to generate a µhb graph that the user can view and use for debugging.

If Z3 cannot find a satisfying assignment, then no acyclic µhb graph satisfying the

constraints exists, and the outcome under consideration is unobservable (up to the

user-specified bound).

151

4.7 RealityCheck Usage Flows

RealityCheck may be used to verify a component against its interface in isolation

(Section 4.4), independent of the rest of the design. This capability of per-module

verification enables RealityCheck to adapt to multiple design flows. If used at early-

stage design time, users may first come up with a shallow design specification where

all modules are represented by their interfaces, and then progressively replace modules

with their submodules and implementations to create a more detailed design over time.

Interface verification can be used to check implementations for correctness as the

design becomes more detailed in this “outside-in” approach. If interface verification

finds bugs, then additional axioms should be added to the implementation until

interface verification succeeds. On the other hand, if an implementation (or RTL)

already exists, users may favour an “inside-out” approach, where they first model

one or a few modules deep in the system, and progressively add more modules and

hierarchy to the specification until the entire design is modelled. In either case, some

of the module boundaries in the processor may not be decided when engineers begin

to write the specification, and may only become evident over time. RealityCheck’s

support for modularity, hierarchy, and abstraction ensures that this is not a problem.

Engineers can easily add, remove, or replace RealityCheck modules or interfaces with

different implementations or combinations of other modules as their design progresses,

without needing to overhaul the entire specification each time.

When decomposing a module into submodules, users should try and minimise

communication between the submodules. If such decomposition proves difficult, or

would result in submodules with minimal internal functionality and large amounts of

communication between them, it may be better to leave the module as a single unit, i.e.

no submodules. The more internal events one can hide using abstraction, the faster

verification will be (generally speaking). So for instance, RealityCheck will be fast

for a microarchitecture that has a simple request-response interface to memory where

152

all other memory functionality is hidden. Likewise, it will be slower for a speculative

microarchitecture where coherence invalidations are propagated up to the pipeline.

Nevertheless, RealityCheck is still capable of verifying such microarchitectures.

In the case where RTL exists prior to creating a RealityCheck model, users may

use a tool like RTLCheck (Chapter 3) to check that the axioms they are writing for

modules are sound for suites of litmus tests. RealityCheck’s µspec++ axioms are a

better fit for translation to SVA assertions using a tool like RTLCheck than the µspec

axioms of PipeCheck are. PipeCheck’s µspec axioms are omniscient (Section 4.2.2)

and have no notion of an RTL implementation’s structural modularity. Thus, SVA

assertions generated from them must be evaluated over the entire RTL implementation.

This greatly limits the scalability of these generated properties, as seen by the lack of

complete proofs for some generated properties even for an implementation as small as

Multi-V-scale (Section 3.9). Meanwhile, RealityCheck’s µspec++ axioms are scoped

to individual modules, so SVA assertions generated from such µspec++ axioms will be

scoped to individual modules as well. As a result, these generated assertions will not

need to be evaluated over the entire RTL implementation, but only over the modules

to which the relevant µspec++ axiom is scoped. This will improve the verification

performance of the generated SVA assertions, paving the way for scalable automated

MCM verification of RTL in the future.2

2RTLCheck translates µspec axioms rather than µspec++ axioms because RTLCheck was de-
veloped chronologically before RealityCheck. In fact, the low scalability of RTLCheck’s generated
properties when they were run under the JasperGold verifier was a major impetus for the development
of RealityCheck.

153

Table 4.1: Microarchitectures Evaluated Using RealityCheck

Name Pipelines Mem. Hierarchy MCM
simpleProc inOrderCore unifiedMem SC
cacheProc inOrderCore L1Hier SC
simpleProcTSO sbCore unifiedMem TSO
cacheProcTSO sbCore L1Hier TSO
simpleProcRISCV rvwmoCore unifiedMem RVWMO
cacheProcRISCV rvwmoCore L1Hier RVWMO
heteroProcRISCV 2 sbCore-RISCV,

2 rvwmoCore
L1Hier RVWMO

4.8 Methodology and Results

4.8.1 Methodology

RealityCheck is written primarily in Gallina, the functional programming language of

Coq [Coq04]. It also includes some OCaml, specifically the code to translate µspec++

formulae into Z3 using the Z3 OCaml API. RealityCheck builds on PipeCheck’s µspec

parsing and axiom simplification [LSMB16], adding support for the various µspec++

features discussed in Section 4.5. In contrast to prior work [LSMB16] that used a

basic SMT solver written in Gallina that supported µspec, RealityCheck utilises the

state-of-the-art Z3 SMT solver [dMB08] to check its SMT formulae. RealityCheck’s

Gallina code is extracted to OCaml using Coq’s built-in extraction functionality, and

compiled along with RealityCheck’s native OCaml code and Z3’s OCaml API into a

standalone binary that can call into Z3 to solve SMT formulae. Experiments were

run on an Ubuntu 18.04 machine with 4 Intel Xeon Gold 6230 processors (80 total

cores) and 1 TB of RAM. Each run of RealityCheck only utilises one core at time,

but multiple instances of it can be run in parallel.

154

Figure 4.13: Verification times for 95 SC/TSO litmus tests across four microarchitec-
tures implementing the SC and TSO MCMs. Each column represents the runtimes for
the 95 tests for one particular configuration. The box represents the upper and lower
quartile range of the data. Dots represent points lying beyond 1.5x the interquartile
range (the extent of the whiskers) from the ends of the box. RealityCheck verifies
92 of the 95 litmus tests across all configurations in under 4 minutes each. The use
of interfaces for abstraction reduces runtime by over 24% for the cacheProc and
cacheProcTSO microarchitectures.

4.8.2 Verifying Litmus Tests

Table 4.1 lists the 7 microarchitectures (each with 4 cores) on which I ran RealityCheck.

The first six microarchitectures are comprised of the possible combinations of three

pipelines and two memory hierarchies. The three pipelines are: (i) inOrderCore,

an in-order 5-stage pipeline that performs memory operations in program order, (ii)

sbCore, an in-order 5-stage pipeline with a store buffer from which it can forward

values, and (iii) rvwmoCore, an out-of-order RISC-V pipeline which implements RISC-

V’s RVWMO weak memory model [RIS19]. sbCore is capable of reordering writes

with subsequent reads, as allowed by TSO (Total Store Order), the consistency model

of Intel [Int13] and AMD x86 processors. rvwmoCore is more relaxed; it allows any

loads and stores to different addresses to be reordered (in the absence of fences),

while preserving address, data, and control dependencies as required by RVWMO.

155

Figure 4.14: Verification times for 98 RISC-V litmus tests across three microarchitec-
tures implementing the RISC-V RVWMO MCM. RealityCheck verifies each litmus
test in under 4 minutes. The use of interfaces for abstraction reduces runtime by 30%
or more for the cacheProcRISCV and heteroProcRISCV microarchitectures.

rvwmoCore supports coalescing of stores in its store buffer, and also supports all 8

of the RISC-V base ISA’s fences for ordering memory loads and stores. The two

memory hierarchies I model are unifiedMem, a single unified memory, and L1Hier,

which consists of an L1 cache module backed by a module for a unified memory. The

L1 cache in L1Hier is a non-blocking cache. It models requests for data from main

memory, cache occupancy, and coalescing of stores before writing back to memory.

The final microarchitecture I evaluate RealityCheck on is heteroProcRISCV, a

heterogeneous RISC-V processor. heteroProcRISCV has 2 out-of-order rvwmoCore

pipelines and 2 in-order sbCore pipelines modified for the RISC-V ISA. To modify

sbCore for RISC-V, I changed it to only enforce RISC-V fences that order writes with

respect to subsequent reads, and to treat all other fences as nops. This is because the

orderings enforced by other RISC-V fence types are already maintained by sbCore by

default.

I also created four interfaces: one for each pipeline (inOrderInt, sbInt, and

rvwmoInt) and one for the L1Hier memory hierarchy (AtomicMemory). Pipeline

156

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

se
co

n
d

s)

Bound (# of operations)

Figure 4.15: Runtimes for verifying L1Hier against AtomicMemory with varying
bounds. Low bounds (e.g. 3-4) are sufficient to find common bugs.

interfaces like inOrderInt reduce each pipeline module to its requests to and responses

from memory (and its dependency orderings, in the case of rvwmoInt). Meanwhile,

AtomicMemory abstracts L1Hier as a unified memory. These interfaces help verification

scale as discussed below.

SC and TSO Results

Figure 4.13 shows RealityCheck’s runtimes (as a box-and-whisker plot) for a suite of

95 SC/TSO litmus tests on the four SC and TSO microarchitectures, both with and

without interfaces. These results use a bound of up to 11 operations per module. The

litmus tests in the SC/TSO suite come from a variety of sources, including existing

x86-TSO suites [OSS09] and automatically generated tests from the diy tool [diy12]. As

Figure 4.13 shows, RealityCheck’s verification of litmus tests is quite fast, despite the

increased detail of its microarchitectural specifications when compared to PipeCheck.

92 of the 95 tests are verified by all 8 configurations in under 4 minutes each. The three

remaining tests (co-iriw, n3, and iwp27) take longer as they have a large number

157

of instructions (e.g. n3 has 9 instructions) and/or possibilities to consider. However,

RealityCheck still verifies them under all configurations in less than 14 minutes each.

Figure 4.13 also shows how the use of interfaces provides significant reductions

in overall litmus test verification runtime. Pipeline interfaces and AtomicMemory

can be used to abstract away portions of each design for litmus test verification.

The use of abstraction reduces the total time to verify all litmus tests by 24.2% for

cacheProc, 0.6% for simpleProcTSO, and 29.7% for cacheProcTSO. Meanwhile, the

use of abstraction increases runtime for simpleProc by 3.7%, illustrating that interfaces

may not reduce verification time for very simple designs. The runtime savings are much

higher for cacheProc and cacheProcTSO because they use the AtomicMemory interface

to abstract L1Hier. L1Hier is relatively detailed when compared to AtomicMemory,

so verification using AtomicMemory takes much less time.

RVWMO Results

Figure 4.14 shows RealityCheck’s runtimes for 98 RVWMO litmus tests on my 3

RVWMO microarchitectures, both with and without interfaces. These results use

a bound of up to 11 operations per module. The RVWMO litmus tests used are

generated using an automated litmus test synthesis tool [LWPG17]. Given a formal

MCM specification, the tool generates all litmus tests (up to a bound) for that MCM

that satisfy a minimality criterion: no synchronization mechanism in the test can

be weakened without causing new behaviours to become observable. As a result, the

generated tests provide excellent coverage of MCM corner cases. The litmus tests I

use for RVWMO are the set of litmus tests up to 6 instructions long generated by this

tool for the RVWMO MCM.

As Figure 4.14 shows, RealityCheck verifies each litmus test in all 6 configurations

in under 4 minutes per test. The maximum time per test is lower under RVWMO

than SC or TSO because my largest RVWMO litmus test is 6 instructions long

158

Table 4.2: Interface verification times for pipeline modules (bound of 15)

inOrderCore tsoCore riscvCore
< 1 sec. 18 sec. 42 minutes

(compared to e.g., the n3 TSO litmus test which has 9 instructions). Similar to

the SC and TSO microarchitectures, interfaces reduce verification time by 32.1% for

cacheProcRISCV and 30.0% for heteroProcRISCV, while increasing runtime by 1.0%

for simpleProcRISCV.

The use of interfaces for abstraction depends on the implementations of those

interfaces being verified against the interface specifications. I present results on those

next.

4.8.3 Interface Verification

I conducted interface verification of three pipelines (inOrderCore, sbCore, and

rvwmoCore) against their respective interfaces. Table 4.2 shows interface verifica-

tion times for these pipelines (bound of 15). Interface verification of rvwmoCore takes

longer than interface verification for the other two pipelines because the RISC-V

pipeline is substantially more complicated. Nevertheless, its interface verification

completes in 42 minutes.

I also verified the L1Hier memory hierarchy against AtomicMemory. Figure 4.15

shows interface verification runtime for L1Hier against AtomicMemory with varying

bounds. MemHier interface verification runtimes at higher bounds are significantly

larger than litmus test runtimes. For instance, interface verification of L1Hier at a

bound of 10 takes over 14 hours. This is not surprising, as interface verification checks

the implementation for all possible combinations of operations up to the user-specified

bound. So for example, if verifying L1Hier against AtomicMemory with a bound

of 10, one is checking all possible combinations of up to 10 transactions. This is

essentially verifying all possible “programs” (from the perspective of memory) of up to

159

10 operations, which is far more than the possible memory transaction combinations

that could result from a single litmus test.

The high runtimes for interface verification of MemHier are not as big an issue as

they may initially seem. As Section 4.8.4 below shows, bugs in implementations which

cause them to not match their interfaces are detectable at lower bounds, and are found

quickly even at higher bounds. Thus, even if interface verification has not terminated,

if it does not find a bug quickly, the design is likely to be correct. Furthermore,

interface verification can be run in parallel with both litmus test verification and with

interface verification of other modules, making it well placed to take advantage of

large compute clusters. Finally, interface verification of a module only needs to be run

once, not once per litmus test. As the number of litmus tests run increases, the time

saved from using interfaces for abstraction will draw closer to the time for interface

verification.

4.8.4 Bug Finding

To test how quickly interface verification can find bugs, I performed three case studies

where I added a bug to the implementation of a component and then verified it

against its interface. The first bug I added was to remove the axiom in L1Hier’s L1

cache which ensured that it could only have one value for a given address at any

time. RealityCheck discovered this bug when verifying L1Hier against AtomicMemory

at a bound of 3 in less than a second. Even when the bound was increased to 15,

RealityCheck still found the bug in under 2 minutes. The second bug I added was

to remove the axiom in L1Hier’s L1 cache which prevented it from dropping dirty

values without writing them back. RealityCheck discovered this bug during interface

verification at a bound of 4 in less than a second. Once again, even when the bound

was increased to 15 operations, RealityCheck still caught the bug in less than 2 minutes.

The final bug I added was to try and verify sbCore against inOrderInt. This should

160

fail because inOrderInt requires program order to be preserved, while sbCore relaxes

write-read ordering. RealityCheck duly discovered the bug at a bound of 15 in under

a second.

4.9 Chapter Summary

Modern processors are complex parallel systems which incorporate components built

by many different teams (and possibly multiple vendors), and they require stringent

MCM verification to ensure their correctness. In prior work, PipeCheck developed a

methodology for automated microarchitectural MCM verification, but its monolithic

approach is ill-suited to the verification of large designs (like those of commercial

processors) for three reasons. Firstly, PipeCheck’s monolithic verification does not

scale to detailed models of large designs due to the NP-completeness of SMT solvers.

Secondly, PipeCheck’s specifications are also monolithic, with no capability to explicitly

denote component boundaries. This is problematic because processors are usually

designed by a combination of distinct teams, where each team is responsible for one

or a few design components. Each team will know the details of its own component

to write a specification for it, but they may know very little about the components

designed by other teams. As a result, it is very hard to write a monolithic specification

for the entire processor, as no one individual has detailed knowledge of the entire

design. Finally, PipeCheck’s monolithic specifications encourage the use of axioms

that exercise a omniscient view of the design. These axioms often reflect architectural

intent rather than the reality of what the design does, and can lead to unsound

verification if the architectural intent does not match reality. All these problems

can be solved through the development of an automated microarchitectural MCM

verification approach that incorporates modularity, hierarchy, and abstraction.

161

In response, this chapter presents RealityCheck, the first methodology and tool for

automated formal MCM verification of modular hardware design specifications. The

key idea behind RealityCheck is to leverage the structural modularity and hierarchy

present in today’s hardware designs to provide scalable automated MCM verification

(up to a bound) of microarchitectural orderings. RealityCheck provides support in its

novel specification language µspec++ for modularity, hierarchy, and abstraction. Users

of RealityCheck can encapsulate orderings enforced by a component into modules

which can be composed with and instantiated inside each other to create larger modules.

This makes RealityCheck well-suited to the distributed nature of processor design.

It also helps prevent users from writing omniscient axioms that do not reflect what

the design is actually doing. Furthermore, RealityCheck enables each component to

be verified against its interface specification independently of the rest of the system,

and regardless of whether the rest of the design specification exists. This enables

verification of the entire design to be split into multiple smaller verification problems,

allowing verification to scale. As the results in this chapter demonstrate, RealityCheck

is capable of automatically verifying hardware designs across a range of litmus tests,

and it can detect bugs extremely quickly. Finally, RealityCheck fulfills the requirement

for detailed design verification in a progressive verification flow (Chapter 6) for MCM

properties in parallel processors.

162

Chapter 5

Automated All-Program MCM

Verification1

That one may smile, and smile, and be a villain;

—William Shakespeare
Hamlet

Chapters 3 and 4 cover how to verify the soundness of microarchitectural ordering

models and how to conduct scalable microarchitectural MCM verification respectively.

Verification of microarchitectural model soundness and scalable verification procedures

are both critical for the MCM verification of real-world processors. Equally important,

however, is the issue of MCM verification coverage addressed by this chapter.

A hardware design must obey its MCM for any program that it may run. Thus,

to ensure that parallel programs run correctly, verification of hardware MCM imple-

mentations would ideally be complete; i.e., verified as being correct across all possible

executions of all possible programs. However, no prior automated approach was

capable of such complete verification. For instance, PipeCheck [LPM14, LSMB16]

(Section 2.4) can only verify one litmus test at a time. Since there is an infinite

1An earlier version of the work in this chapter was previously published and presented by myself
at the MICRO-51 conference [MLMG18]. I was the first author on the publication.

163

number of possible programs, PipeCheck is incapable of proving correctness across all

programs.

To help fill this verification gap, this chapter presents PipeProof, a methodology

and tool for complete MCM verification of an axiomatic microarchitectural ordering

specification against an axiomatic ISA-level MCM specification. PipeProof can

automatically prove a microarchitecture correct across all programs, or return an

indication (often a counterexample) that the microarchitecture could not be verified. To

accomplish unbounded verification, I developed the novel Transitive Chain Abstraction

to represent microarchitectural executions of an arbitrary number of instructions using

only a small, finite number of instructions. With the help of this abstraction, PipeProof

proves microarchitectural correctness using an approach based on Counterexample-

Guided Abstraction Refinement (CEGAR) [CGJ+00]. In addition, to my knowledge,

PipeProof is the first ever automated refinement checking methodology and tool

for pairs of axiomatic models of executions. PipeProof’s implementation includes

algorithmic optimizations which improve runtime by greatly reducing the number

of cases considered. As a proof-of-concept study, this chapter includes results for

modelling and proving correct simple microarchitectures implementing the SC and

TSO MCMs. PipeProof verifies both case studies in under an hour.

5.1 Introduction

A key challenge in parallel hardware design is ensuring that a given microarchitecture

(hardware design) obeys its ISA-level MCM. If the hardware does not respect its

MCM in all possible cases, then the correct operation of parallel programs on that

implementation cannot be guaranteed.

The ramifications of MCM bugs in parallel processors necessitate verifying that the

hardware correctly implements its MCM. Such verification would ideally be complete;

164

i.e., it would cover all possible executions of all possible programs. However, truly

complete verification is extremely difficult. The only prior all-program consistency

proofs of hardware are implemented in interactive proof assistants [VCAD15,CVS+17]

(Section 2.3.4), which require significant manual effort.

Automated approaches make it much easier for microarchitects to verify their

designs. However, no prior automated approach was capable of all-program MCM

verification. Dynamic verification approaches [HVML04,MS09] (Section 2.3.5) only

examine a subset of the possible executions of any program they test, so they are

incomplete even for those programs. Formal MCM verification approaches look at

all possible executions of the programs they check, but all such approaches that

are automated have only been able to conduct verification of implementations for a

bounded set of programs. The verified programs in such an approach may be a suite of

litmus tests [AMT14,LPM14,MLPM15,LSMB16,TML+17,MLMP17], or all programs

smaller than a certain bound (∼10 instructions) [WBSC17].

Critically, litmus test-based or bounded verification only ensures that the imple-

mentation will correctly enforce orderings for the verified programs themselves. It

does not ensure that the implementation will correctly enforce required orderings

for all possible programs. These incomplete approaches have missed important bugs

because the set of programs they verified did not exercise those bugs [WBSC17].

This necessitates an automated approach capable of conducting all-program MCM

verification of microarchitectural implementations.

To fill this need for all-program microarchitectural MCM verification, this chapter

presents PipeProof2, a methodology and automated tool for unbounded verification

of axiomatic microarchitectural ordering specifications [LSMB16] against axiomatic

ISA-level MCM specifications [AMT14]. PipeProof uses an approach based on Satis-

fiability Modulo Theories (SMT) [BSST09] and Counterexample-Guided Abstraction

2PipeProof is open-source and publicly available at github.com/ymanerka/pipeproof.

165

Refinement (CEGAR) [CGJ+00]. PipeProof’s unbounded verification covers all pos-

sible programs, core counts, addresses, and values. The key to PipeProof’s unbounded

verification is its novel Transitive Chain Abstraction, which allows PipeProof to induct-

ively model and verify the infinite set of program executions that must be verified for

a given microarchitecture. As its output, PipeProof either provides a guarantee that

the microarchitecture is correct, or returns an indication that the microarchitecture

could not be verified. In addition, to my knowledge, PipeProof is the first ever

automated refinement checking methodology and tool for pairs of axiomatic models of

executions. As such, PipeProof makes advances in refinement checking in addition to

its contributions to MCM verification.

The rest of this chapter is organised as follows. Section 5.2 covers PipeProof’s pro-

cedure for proving microarchitectural correctness. Section 5.3 presents the supporting

proofs and modelling techniques leveraged by the microarchitectural correctness proof.

Section 5.4 covers optimizations that reduce PipeProof’s runtime, while Section 5.5

discusses methodology and results. Section 5.6 discusses related work, and Section 5.7

summarises this chapter.

5.2 PipeProof Operation

PipeProof’s goal is to prove that a microarchitectural ordering specification satisfies

its ISA-level MCM specification across all executions of all programs. Section 2.3.1

provides background on the ISA-level MCM specifications used by PipeProof, while

Section 2.4.2 provides background on the microarchitectural specifications PipeProof

uses. A very brief refresher is provided below.

In PipeProof, ISA-level and microarchitectural executions are formally defined as

follows:

166

Core 0 Core 1

(i1) [x] ← 1 (i3) r1 ← [y]

(i2) [y] ← 1 (i4) r2 ← [x]

SC forbids r1=1, r2=0

(a) Code for litmus test mp

[x] ← 1

fr

[y] ← 1

r1 ← [y]

r2 ← [x]

rf
po po

(i4)

(i3)(i1)

(i2)

(b) ISA-level execution of mp forbidden
under SC due to the cycle in the po, rf ,
and fr relations.

(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po

(c) µhb graph for mp’s forbidden outcome
on the simpleSC microarchitecture. The
corresponding ISA-level cycle is shown
above the µhb graph.

Figure 5.1: Example litmus test, ISA-level execution, and µhb graph for the mp litmus
test.

Definition 1 (ISA-Level Execution). An ISA-level execution (Instrs, Rels) is a graph.

Nodes Instrs are instructions, and edges Rels between nodes represent ISA-level

MCM attributes.

Definition 2 (Microarchitectural Execution). A microarchitectural execution is a

µhb graph (Instrs,N,E). Nodes N represent individual sub-events in the execution

of instructions Instrs. Edges E represent happens-before relationships between nodes.

ISA-level MCM specifications (Section 2.3.1) used by PipeProof are axiomatically

defined in terms of the irreflexivity, acyclicity, or emptiness of certain relational

patterns. For example, SC can be defined in this framework as acyclic(po∪co∪rf∪fr).

Meanwhile, the microarchitectural ordering specifications used by PipeProof are sets

of µspec axioms (Section 2.4.2). Figure 5.1 shows both the ISA-level execution

(Figure 5.1b) and a µhb graph (Figure 5.1c) that correspond to the non-SC outcome

of the mp litmus test (Figure 5.1a). The ISA-level execution has a cycle in the po,

167

Microarchitecture
Ordering Spec.

ISA-Level
MCM Spec.

PipeProof

ISA Edge -> Microarch.
Mapping

Result: µarch Proven?
Counterexample found?

Chain
Invariants

TC Abstraction
Support Proof

Microarch.
Correctness

Proof

Cex. Generation

Proof of
Chain Invariants

Pass

Fail

§ 2.4.2 § 2.3.1 § 5.2.2 § 5.3.2

§ 5.3.2

§ 5.2

§ 5.3.1

§ 5.3.1

Pass

Fail

Figure 5.2: High-level block diagram of PipeProof operation. Components are annot-
ated with the sections in which they are explained.

i1 i2

IF

EX

WB

po
i1 i2

IF

EX

WB

rf
i1 i2

IF

EX

WB

fr
i1 i2

IF

EX

WB

co

Figure 5.3: ISA-level relations can be analysed in terms of how a given microarchitec-
ture enforces them. These four µhb graphs show the µhb edges between instructions
that are enforced (directly or indirectly) by the mappings of ISA-level edges to the
simpleSC microarchitecture.

rf , and fr relations, and so is forbidden by SC as one would expect. The µhb graph

represents an execution of mp on a simple microarchitecture (henceforth referred to as

simpleSC) with 3-stage in-order pipelines. The 3 stages in this pipeline are Fetch (IF),

Execute (EX), and Writeback (WB). The corresponding ISA-level cycle (the same one

as Figure 5.1b) is shown on top of the µhb graph. In simpleSC, loads access memory

in the Execute stage and stores go to memory during Writeback. The µhb graph in

Figure 5.1c contains a cycle, so the execution represented by it is unobservable on the

microarchitecture being modelled, as expected of an SC microarchitecture.

168

Axiom "Mappings_po":

forall microop "i", forall microop "j",

HasDependency po i j => AddEdge ((i, Fetch), (j, Fetch), "po_arch").

Figure 5.4: Example mapping axiom for po ISA-level edges on simpleSC.

i1 in
r1…n-1 ⟹

Translate to
microarch.

fr

i1 in

Some µhb
edge from

i1 to in

(transitive
connection)

fr

i1 and in connected by ISA-
level chain of length ≥ 1

Figure 5.5: A graphical example of the Transitive Chain (TC) Abstraction: all possible
ISA-level chains connecting i1 to in (left) can be abstracted as some µhb edge (the
transitive connection) between the nodes of instructions i1 and in (right). The red
µhb edge is the microarchitectural mapping of the fr edge from in to i1.

5.2.1 PipeProof Overview

Figure 5.2 shows PipeProof’s high-level block diagram. The inputs to PipeProof are

a set of µspec axioms describing microarchitectural orderings, an ISA-level MCM

specification, mappings (to link ISA-level and microarchitectural executions), and

chain invariants (to abstractly represent repeating ISA-level patterns). As its output,

PipeProof will either prove the microarchitecture correct for all possible programs or

return an indication that the microarchitecture could not be verified.

PipeProof’s overall operation has three high-level steps:

1. Prove chain invariants correct (Section 5.3.2).

Then for each forbidden ISA-level pattern in the ISA-level MCM specification:

2. Prove Transitive Chain (TC) Abstraction support for the microarchitecture and

the ISA-level pattern (Section 5.3.1).

3. Prove Microarchitectural Correctness for the microarchitecture and the ISA-level

pattern (covered in the remainder of this section).

169

The proofs of TC Abstraction support and chain invariants are supporting proofs

on which PipeProof’s main Microarchitectural Correctness Proof builds. The Microar-

chitectural Correctness Proof proves Theorem 2 below.

Theorem 2 (Microarchitectural Correctness). For each ISA-level execution

ISAExec := (Instrs, Rels) where Rels exhibits a pattern forbidden by the

ISA-level MCM, all microarchitectural executions (Instrs,N,E) corresponding to

ISAExec are unobservable (i.e., their µhb graphs are cyclic).

The rest of this section describes the Microarchitectural Correctness Proof in

detail, beginning with the structure of the ISA-level executions PipeProof verifies

(Section 5.2.2) and their translation to equivalent microarchitectural executions (Sec-

tion 5.2.3). The Microarchitectural Correctness proof uses an abstraction refinement

approach that leverages the TC Abstraction (Section 5.2.4) to model executions. Pipe-

Proof’s refinement process involves examining abstract counterexamples (Section 5.2.5)

and refining the abstraction through concretization and decomposition (Section 5.2.6).

The section concludes by explaining when PipeProof’s algorithm is able to terminate

(Section 5.2.7).

5.2.2 Symbolic ISA-Level Executions

PipeProof works with ISA-level executions that are similar to the ISA-level execution

of mp in Figure 5.1b, but it uses symbolic instructions. In other words, the instructions

in such ISA-level executions do not have specific addresses or values. The symbolic

version of the ISA-level execution in Figure 5.1b would consist of four instructions

i1, i2, i3, and i4, connected by the po, rf , and fr edges as shown, but nothing more

would be known about the four instructions beyond the constraints enforced by the

ISA-level relations. For instance, the instructions connected by po would be known to

be on the same core, and the rf edge between i2 and i3 would enforce that i2 and i3

170

had the same address and value. However, the specific address and value of i2 and

i3 could be anything. Such a symbolic ISA-level execution represents not only the

ISA-level execution of mp in Figure 5.1b, but any ISA-level execution comprised of

the cycle3 po; rf ; po; fr. Thus, verifying such a symbolic ISA-level execution checks

the instance of the ISA-level pattern in that execution across all possible addresses

and values, as required for complete verification.

5.2.3 Mapping ISA-level Executions to Microarchitecture

To verify that a forbidden ISA-level execution is microarchitecturally unobservable,

one needs to translate the ISA-level execution to its corresponding microarchitectural

executions.4 PipeProof’s complete verification requires such translation for any

arbitrary ISA-level execution, not just a particular program instance. PipeProof’s

microarchitectural executions are similar to the µhb graph in Figure 5.1c, but like

PipeProof’s ISA-level executions, they operate on symbolic instructions which do not

have specific addresses and values.

An ISA-level execution’s instructions can be translated by instantiating the µspec

microarchitectural axioms for those instructions. Translating ISA-level relations to

microarchitecture is harder because the microarchitectural constraints implied by

an ISA-level relation differ between microarchitectures. Thus, PipeProof requires

user-provided mappings to translate individual ISA-level edges to their corresponding

microarchitectural constraints. These mappings are additional µspec axioms that

restrict the executions examined by PipeProof’s solver to the microarchitectural

executions where the mapped ISA-level edge exists between its source and destination

instructions.

3A semicolon (;) denotes relational composition. For example, r1; r2 denotes a sequence of two
ISA-level edges r1 and r2 where the destination instruction of r1 is the source instruction of r2.

4There are usually multiple microarchitectural executions corresponding to a single ISA-level
execution.

171

Figure 5.3 shows the µhb edges enforced by mappings of the ISA-level edges fr,

rf , po, and co on simpleSC. Figure 5.4 shows the mapping axiom for po edges on

simpleSC, which translates a po edge between instructions i and j to a µhb edge

between the Fetch stages of those instructions. Such an edge can be seen between i1

and i2 in the po case of Figure 5.3. This edge between the Fetch stages indirectly

induces edges between the Execute and Writeback stages of the instructions as well,

through other axioms from simpleSC’s µspec. These µhb edges are also shown in

Figure 5.3, and reflect the in-order nature of simpleSC’s pipeline.

5.2.4 The TC Abstraction: Representing Infinite ISA-level

Chains

Symbolic analysis and the use of mappings for ISA-level edges allow a single ISA-level

cycle to be translated to the microarchitectural level for all possible addresses and

values. However, there are an infinite number of possible ISA-level cycles that match

a forbidden ISA-level pattern like cyclic(po ∪ co ∪ rf ∪ fr) (which are the executions

forbidden by SC). Conceptually, all of these ISA-level cycles need to be verified as

being unobservable in order to ensure that the microarchitecture is correct across all

possible programs. Such unbounded verification is made possible by using inductive

approaches. PipeProof achieves unbounded verification by inductively modelling

executions using a novel Transitive Chain (TC) Abstraction.5 Specifically, PipeProof

uses the TC Abstraction to efficiently represent ISA-level chains (defined below):

Definition 3. An ISA-level chain is an acyclic sequence of ISA-level relations

r1; r2; r3...; rn. An example ISA-level chain is po; rf ; po from Figure 5.1b.

5This abstraction is conceptually similar but completely distinct from the module-based abstraction
covered in Chapter 4. In Chapter 4, my work uses interfaces to abstract away portions of the design
specification to enable scalable verification. In this chapter, my work uses the Transitive Chain
Abstraction to abstractly represent portions of microarchitectural executions, enabling all-program
verification.

172

(Checks of other possible
transitive connections…)

Can concretize?
No

Acyclic graph =>
Abstract Counterexample,

rerun refinement loop

Cyclic graph =>
Represented microarchitectural

executions correctly unobservable

Required edge from p to q
does not exist =>

Do not consider further

(Other decompositions…)

Return
Counterexample

Yes

Consider all Transitive Connection Decompositions

i1 in

IF

EX

WB

fr

Some
Tran.
Conn.

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr

Decomposition A (Valid)✓

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr

Decomposition C (Invalid)

p

i1 i2

IF

EX

WB

co

r

q

in

fr

Decomposition B (Valid) ?

Consider all possible Transitive Connections (light green arrows)

p

i1

r

q

in

IF

EX

WB

fr

Acyclic graph => Microarch.
executions represented by

this graph may be observable

Abstract Counterex.
(AbsCex) ?

i1 in

IF

EX

WB

fr

Graph cyclic => Microarch.
executions represented by

this graph are unobservable

Abstraction Sufficient
(NoDecomp)

✓ …

i1 in

IF

EX

WB

co

Some
Tran.
Conn.

i1 in

IF

EX

WB

rf

Some
Tran.
Conn.

… … …

Cycles containing fr Cycles containing rf

i1 in

IF

EX

WB

po

Some
Tran.
Conn.

Cycles containing po Cycles containing co

N/A

p

r

q

Figure 5.6: PipeProof checking that non-unary ISA-level cycles forbidden by SC
are unobservable on simpleSC with the help of the Transitive Chain Abstraction.
This figure focuses on the cycles containing fr edges. Acyclic graphs like AbsCex are
abstract counterexamples: they may be concretized into real counterexamples or broken
down into possible decompositions which are each checked in turn. Decompositions A
and B are valid decompositions (subsets) of AbsCex, because they guarantee the edge
from p to q in AbsCex. Decomposition C does not guarantee this edge, and is thus
invalid and not considered further. Decomposition A strengthens the TC Abstraction
enough to make the graph cyclic (and thus unobservable) as required. Decomposition
B is valid but acyclic, so its abstraction needs to be refined further.

173

The TC Abstraction is the representation of an ISA-level chain of arbitrary length

between two instructions i1 and in as a single µhb edge between i1 and in at the

microarchitecture level. None of the intermediate instructions in the chain are explicitly

modelled. Abstract executions are those executions where the TC Abstraction is used

to represent an ISA-level chain. Meanwhile, concrete executions are those executions

where all instructions and ISA-level edges are explicitly modelled; that is, where

nothing is abstracted using the TC Abstraction. (Instructions in concrete executions

are still symbolic.)

Figure 5.5 illustrates the TC Abstraction for ISA-level cycles containing the fr

edge. The left of the figure represents all possible non-unary ISA-level cycles (i.e., the

cycles containing more than one instruction6) that contain an fr edge. In these cycles,

i1 may be connected to in by a single ISA-level edge or by a chain of multiple ISA-level

edges (the transitive chain). These cycles include the ISA-level cycle po; rf ; po; fr from

Figure 5.1b (since it contains an fr edge), as well as an infinite number of other cycles

containing fr. Using the TC Abstraction, any microarchitectural execution (as seen

on the right) corresponding to such an ISA-level cycle represents the chain between i1

and in by some µhb edge (the transitive connection) from a node of i1 to a node of in.

(The red µhb edge from in to i1 is the mapping of the fr edge to the microarchitecture.)

Thus, if the µhb graph on the right is verified to be unobservable for all possible

transitive connections from i1 to in, then the microarchitecture is guaranteed to be

correct for all possible ISA-level cycles containing the fr edge. PipeProof automatically

checks that the microarchitecture and ISA-level pattern support the TC Abstraction

(Section 5.3.1) before using it to prove microarchitectural correctness.

The Transitive Chain Abstraction’s capability to represent ISA-level chains of

arbitrary length using a single transitive connection from the start to the end of the chain

is the key insight underlying PipeProof ’s complete verification across all programs. This

6The number of unary cycles (those where an instruction is related to itself) is small, so PipeProof
explicitly enumerates and checks them separately.

174

representation allows PipeProof to conduct unbounded verification while only explicitly

modelling as many instructions as needed to prove microarchitectural correctness. The

transitive connection models the effects of intermediate instructions in the ISA-level

chain without explicitly modelling the instructions themselves, allowing for efficient

modelling and verification of all possible ISA-level cycles. The TC Abstraction is

both weak enough to apply to a variety of microarchitectures and also strong enough

(with appropriate refinements discussed below) to prove microarchitectural MCM

correctness.

5.2.5 Abstract Counterexamples

The TC Abstraction guarantees the presence of some µhb edge between the start and

end of an ISA-level chain, such as that between i1 and in in Figure 5.5. To prove

microarchitectural correctness using the TC Abstraction, PipeProof must show that for

each possible transitive connection between i1 and in, all possible microarchitectural

executions corresponding to the ISA-level cycles being checked are unobservable.

Figure 5.6 shows PipeProof’s procedure for proving Theorem 2 on simpleSC. The

figure focuses on the verification of ISA-level cycles containing at least one fr edge;

the process is repeated for other types of cycles in the pattern (for SC, this equates to

cycles containing po, co, or rf edges). For some transitive connections, like the one in

the NoDecomp case, the initial µhb graph of the abstract execution is cyclic. This

proves the unobservability of all concrete executions represented by NoDecomp, as

required for microarchitectural correctness.

In most cases, however, the initial abstract execution graphs will be acyclic, as is

the case for AbsCex in Figure 5.6. This is because the TC Abstraction’s guarantee of

a single µhb edge (the transitive connection) between the start and end of an ISA-level

chain is necessarily rather weak in order to be general across all possible ISA-level

chains that match a forbidden ISA-level pattern. The weakness of the guarantee is

175

also necessary in order for the TC Abstraction to be general enough to support a

variety of microarchitectures.

In abstraction refinement [CGJ+00], cases such as AbsCex that appear to violate

the property being checked but contain an abstraction are called abstract counter-

examples. They may correspond to concrete (real) counterexamples. They may also be

spurious. When spurious, all concrete cases represented by the abstract counterexample

are in fact correct.

In PipeProof, an abstract counterexample such as AbsCex represents two types of

concrete executions. First, i1 and in may be connected by a single ISA-level edge. On

the other hand, i1 and in may be connected by a chain of multiple ISA-level edges.

To check whether an abstract counterexample is spurious or not, PipeProof conducts

concretization and decomposition (the refinement loop) to handle the aforementioned

two cases.

5.2.6 Concretization and Decomposition: The Refinement

Loop

In the concretization step, PipeProof checks the case where i1 is connected to in by

a single ISA-level edge. PipeProof does so by replacing the transitive connection

between i1 and in with a single ISA-level edge that causes the resultant ISA-level

cycle to match the forbidden ISA-level pattern. This concrete execution must be

microarchitecturally unobservable. For example, when trying to concretize AbsCex in

Figure 5.6, PipeProof checks the ISA-level cycle po; fr, then co; fr, then rf ; fr, and

finally fr; fr, since each of these are ISA-level cycles forbidden by SC that arise from

replacing the transitive connection of AbsCex with a single ISA-level edge. If any

of these concrete executions is found to be observable, then the microarchitecture is

buggy and PipeProof returns the observable ISA-level cycle as a counterexample.

176

If executions where the transitive connection is replaced by a single ISA-level

edge are found to be unobservable, PipeProof then inductively checks the case where

i1 is connected to in by a chain of multiple ISA-level edges through decomposition.

PipeProof decomposes the transitive chain of n− 1 ISA-level edges7 into a transitive

chain of n − 2 ISA-level edges represented by a transitive connection, and a single

concrete ISA-level edge. This also results in the explicit modelling of an additional

instruction. The concrete ISA-level edge and instruction added by the decomposition

are “peeled off” the transitive chain. The key idea behind decomposition of the

transitive chain is that the explicit modelling of an additional instruction and ISA-

level edge enforces additional microarchitectural constraints that may be enough to

create a cycle in the graph. If a cycle is created, the decomposition is unobservable,

completing the correctness proof for that case. If all possible decompositions of an

abstract counterexample are found to be cyclic (unobservable), then the abstract

counterexample is spurious and can be ignored. If any decomposition is found to be

acyclic, then that decomposition constitutes an abstract counterexample itself, and

concretization and decomposition are repeated for it. Decomposing the chain one

instruction at a time improves efficiency by ensuring that PipeProof does not explicitly

model more instructions than needed to prove microarchitectural correctness.

Figure 5.6 shows three (of many) possible decompositions of AbsCex. In Decom-

position A, an rf edge has been peeled off the right end of the transitive chain. Peeling

off the rf edge strengthens the abstraction by connecting node p to node r (an edge

not present in AbsCex). This creates a cycle in the µhb graph, rendering the execution

unobservable. This completes the correctness proof for this decomposition.

Decomposition B in Figure 5.6 shows a case where a co edge (rather than an rf

edge) is peeled off the transitive chain. Furthermore, the co edge is peeled off the

left end of the transitive chain rather than the right. Peeling off the co edge refines

7Here, n is an abstract parameter used for induction. It has no concrete value.

177

the abstraction, but this is still not enough to create a cycle in the µhb graph. Thus,

Decomposition B is itself an abstract counterexample, and the process of concretization

and decomposition will be repeated for it.

To ensure completeness of verification when decomposing transitive chains, Pipe-

Proof enumerates all possibilities for the concrete ISA-level edge that could be peeled

off (using the procedure from Section 5.3.5) and for the transitive connection rep-

resenting the remaining chain of length n − 2. Verifying a single decomposition is

equivalent to verifying a subset of the executions of its parent abstract counterexample.

As such, any valid decomposition must guarantee the transitive connections of its

parent abstract counterexamples. Decompositions that violate this requirement do

not represent executions that are modelled by their parent abstract counterexamples,

and hence they are discarded.

For example, Decomposition C in Figure 5.6 is an invalid decomposition of AbsCex

because it does not guarantee the transitive connection of its parent AbsCex (a µhb

edge between nodes p and q) as Decompositions A and B do. PipeProof filters out any

such decompositions that do not guarantee the transitive connections of their parent

abstract counterexamples; it does not consider them further.

PipeProof alternates between peeling from the left and peeling from the right when

inductively decomposing transitive chains. For example, Decomposition B was created

by peeling from the left of AbsCex, so when concretization and decomposition is rerun

for Decomposition B, the next ISA-level edge will be peeled from the right. PipeProof

alternates in this manner because creating a cycle in the graph through decomposition

often requires connecting more nodes to either side of the transitive connection.

5.2.7 Termination of the PipeProof Algorithm

In many cases, repeatedly peeling off instructions from the transitive chain strengthens

the TC Abstraction enough to prove microarchitectural correctness. For the remaining

178

⟹
i1 in

IF

EX

WB

rn in+1

Some
Tran

Conn.

i1 in+1

IF

EX

WB

Some
Transitive

Connection

If rn 𝝐 𝒑𝒐, 𝒄𝒐, 𝒓𝒇, 𝒇𝒓 , show that

Figure 5.7: Graphical depiction of the inductive case of the TC Abstraction support
proof for simpleSC. Extending a transitive chain by an additional instruction and
ISA-level edge rn should extend the transitive connection to the new instruction as
well.

cases, PipeProof may be able to utilise user-provided chain invariants (Section 5.3.2)

to abstractly represent infinite repeated peelings of a specific pattern of ISA-level

edges and ensure termination of the refinement loop. For the SC and TSO case

studies detailed in Section 5.5, peeling off a maximum of 9 instructions from the

transitive chain was sufficient (along with chain invariants) to prove correctness of the

microarchitectures.

PipeProof is not guaranteed to terminate in the general case, since it attempts to

prove correctness across an infinite state-space (all possible programs). Prior work

on enabling CEGAR for infinite-state systems also developed an algorithm that was

not guaranteed to terminate [CFH+03]. Thus, the absence of a termination guarantee

in PipeProof is not unusual.

5.3 Supporting Proofs and Techniques

PipeProof’s Microarchitectural Correctness proof relies on a number of supporting

proofs and modelling techniques in order to prove correctness. This section explains

these proofs and techniques, beginning with the TC Abstraction support proof (Sec-

tion 5.3.1). This proof ensures that a microarchitecture and ISA-level pattern support

the TC Abstraction, enabling it to be used in the Microarchitectural Correctness proof.

Meanwhile, chain invariants (Section 5.3.2) are often required to ensure the termina-

179

i1 i4 i5
fr

i3
po

i1 i4 i5
fr

i2
po_plus

(a) (b) (c)

i1 i3 i4
fr

i2
po

i5
po

Abstract Counterexample Repeating ISA-Level Pattern Chain Invariant Applied

Figure 5.8: Peeling off edges from abstract counterexamples like (a) may cause repeti-
tions of the same pattern, like po in (b). Naively continuing to peel off repeated edges
in this manner may prevent the refinement loop from terminating. Chain invariants
efficiently represent an arbitrary number of repetitions of such ISA-level patterns, as
shown by po plus in (c), allowing PipeProof’s refinement loop to terminate.

Axiom "Invariant_poplus":

forall microop "i", forall microop "j",

HasDependency po_plus i j => AddEdge((i,Fetch),(j,Fetch),"") /\ SameCore i j.

Figure 5.9: Chain invariant for repeated po edges (i.e., po plus) on the simpleSC

microarchitecture.

tion of PipeProof’s abstraction refinement loop. Theory Lemmas (Section 5.3.3) are

required to constrain PipeProof’s symbolic analysis to realisable microarchitectural

executions. PipeProof must also use an over-approximation of microarchitectural

constraints (Section 5.3.4) in order to guarantee soundness. Finally, Section 5.3.5

describes how PipeProof inductively generates ISA-level edges matching a pattern

when decomposing transitive chains.

5.3.1 Ensuring Microarchitectural TC Abstraction Support

As discussed in Section 5.2.4, PipeProof uses the Transitive Chain (TC) Abstraction

to represent the infinite set of ISA-level cycles that match a pattern like cyclic(po ∪

co ∪ rf ∪ fr). The TC Abstraction enables PipeProof to abstract away most of the

instructions and ISA-level relations in these ISA-level cycles and represent them with

a single µhb edge (the transitive connection) at the microarchitecture level.

The TC Abstraction is key to PipeProof’s complete verification. However, to

use the TC Abstraction in its Microarchitectural Correctness proof (Section 5.2),

180

PipeProof must first ensure that the microarchitecture and ISA-level pattern being

verified support the TC Abstraction. If the TC Abstraction cannot be proven to

hold for a given microarchitecture, then PipeProof cannot prove the microarchitecture

correct. PipeProof’s verification is sound; it will never falsely claim that the TC

Abstraction holds without proving it.

The theorem for microarchitectural TC Abstraction support is provided below,

following the definition of an ISA-level subchain:

Definition 4. An ISA-level chain r′1; r
′
2; r
′
3...; r

′
k is a subchain of an ISA-level cycle or

chain r1; r2; r3...; rn if k < n and ri = r′i for i = 1 to k. In other words, the subchain

is the first k edges of the chain. For example, in Figure 5.1b, po; rf ; po is a subchain

of the cycle po; rf ; po; fr.

Theorem 3. If instructions iA and iB are connected by a transitive chain (i.e., a

subchain of a forbidden ISA-level cycle), then there exists at least one µhb edge (the

transitive connection) from a node of iA to a node of iB in all microarchitectural

executions in which that subchain is present.

PipeProof tries to automatically prove Theorem 3 inductively for each microarchi-

tecture and ISA-level pattern for which the TC Abstraction is used.

Base Case: In the base case, we need to show that any single ISA-level edge isaEdge

that could be the start of the ISA-level chain to be abstracted guarantees a µhb edge

between its source and destination instructions i1 and i2. For example, for simpleSC,

PipeProof checks whether a po, co, rf , or fr edge between instructions i1 and i2

guarantees a µhb edge between them. As Figure 5.3 shows, the microarchitectural

mappings of these ISA-level edges do indeed guarantee edges from i1 to i2 for simpleSC,

so the base case passes.

Inductive Case: Figure 5.7 illustrates the inductive case for simpleSC. Given an

ISA-level transitive chain between i1 and in that implies a µhb transitive connection

181

from i1 to in, the inductive case must show that extending the transitive chain with

an additional instruction in+1 and ISA-level edge rn matching the forbidden pattern

extends the transitive connection. In other words, the inductive case must show that

a µhb edge from some node of i1 to some node of in+1 exists.

If the combination of a transitive connection from i1 to in and the microarchitectural

mapping of rn is not enough to guarantee a transitive connection from i1 to in+1,

this constitutes an abstract counterexample to Theorem 3. PipeProof then attempts

to concretize and decompose the transitive chain between i1 and in (as explained in

Section 5.2.6) to discover whether the abstract counterexample is spurious or whether

a concrete ISA-level chain violating Theorem 3 exists. ISA-level chains that fail

Theorem 3 are henceforth referred to as failing fragments.

As in the Microarchitectural Correctness proof (Section 5.2), chain invariants

(Section 5.3.2) are used to abstractly represent cases where an infinite number of

edges could be peeled off without terminating. The abstraction refinement through

decomposition continues until either the abstraction is strong enough to guarantee a

transitive connection between i1 and in+1 in all cases (thus proving Theorem 3), or a

failing fragment is found and returned to the user as failing the proof of Theorem 3.

Strength of Theorem 3: Theorem 3 is stronger than what the Microarchitectural

Correctness proof (Section 5.2) needs. Theorem 3 requires the transitive chain to

guarantee a transitive connection both when the transitive chain is part of a forbidden

ISA-level cycle in the overall execution (as the Microarchitectural Correctness proof

requires) and when it is not part of such an ISA-level cycle (as seen in Figure 5.7).

This enables Theorem 3 to be proven by induction. As Figure 5.7 shows, the inductive

case consists of adding an extra instruction and ISA-level edge to the case guaranteed

by the induction hypothesis, resulting in a proof by induction.

On the other hand, proving the existence of a transitive connection only in the

presence of a forbidden ISA-level cycle is not as straightforward. In the inductive case

182

of such a proof, the induction hypothesis would guarantee a transitive connection for

a chain between instructions i1 and in only if the chain is part of a forbidden ISA-level

cycle, similar to Figure 5.5. Extending this chain of length n− 1 to a chain of length

n (as required for an inductive proof) involves removal of one of the “loopback” edges

connecting in to i1 (fr in Figure 5.5). This is because a loopback edge connecting in

to i1 may not exist in arbitrary forbidden ISA-level cycles containing the extended

transitive chain. If a loopback edge is removed, the induction hypothesis no longer

guarantees a transitive connection between i1 and in, and the proof cannot build on

the guarantees for the chain of length n− 1. In a nutshell, the induction hypothesis

for such a proof is quite weak, so PipeProof cannot currently prove the necessary

property, and attempts to prove the stronger Theorem 3 instead. This also means

that some correct microarchitectures that do not satisfy Theorem 3 cannot be proven

correct by PipeProof at present.

As a result of Theorem 3 being stronger than required, if a failing fragment is

found, the microarchitecture may or may not be buggy. If the microarchitecture

is buggy, PipeProof can generate an ISA-level cycle that exhibits the bug as a

counterexample through its Cyclic Counterexample Generation procedure. This

procedure checks all possible forbidden ISA-level cycles of length 1, then length 2,

and so on for microarchitectural observability. At each iteration, if any of the cycles

are microarchitecturally observable, the observable cycle is returned to the user as a

counterexample. Otherwise, the procedure increases the size of the examined cycles

by 1 and repeats the process.

5.3.2 The Need for Chain Invariants and their Proofs

When decomposing TC Abstractions instruction-by-instruction as outlined in Sec-

tion 5.2.6, it is possible to peel off concrete ISA-level edges that match a repeating

pattern, but for the abstraction to never be strong enough to prove the required prop-

183

erty (Theorem 2 or 3). For example, Figure 5.8a shows an abstract counterexample

to Theorem 3 on simpleSC where there is no µhb connection between instructions

i1 and i5. When decomposing this abstract counterexample, it is possible to peel off

a po edge from the transitive chain, as shown in Figure 5.8b, and still have no µhb

connection between i1 and i5. In fact, one can continue peeling off po edges in this

manner ad infinitum, while never being able to guarantee a µhb edge between i1 and

i5. Such a case will result in the refinement loop of the Microarchitectural Correctness

proof or TC Abstraction support proof being unable to terminate.

For refinement loops to terminate in such cases, PipeProof needs a way to effi-

ciently represent such repeating patterns. To do so, PipeProof utilises user-provided8

chain invariants. These chain invariants are additional µspec axioms which specify

microarchitectural guarantees about repeated ISA-level edge patterns. Users can

examine PipeProof’s status updates to detect when the peeling off of repeated edge

patterns is preventing termination of a refinement loop. This is a sign that the user

needs to provide PipeProof with a chain invariant for the repeated edge pattern in

question.

Figure 5.9 shows an example chain invariant for simpleSC that abstracts a chain

of successive po edges as a single po plus9 edge. This invariant states that if two

instructions i and j are connected by a chain of po edges of arbitrary length, then

at the µhb level, i and j are guaranteed to be on the same core and to have a edge

between their Fetch stages (which in turn implies edges between their Execute and

Writeback stages due to the in-order simpleSC pipeline). An ISA-level chain of

successive po edges of arbitrary length on simpleSC can then be abstractly represented

by a single po plus edge (and the guarantees of its invariant), as seen in Figure 5.8c.

8Future work could also use known invariant generation techniques to automatically discover
invariants for a given concrete repeating ISA-level pattern. The search space of possible chain
invariants is relatively small, and can be reduced further by restricting the search to specific invariant
templates.

9The plus in po plus is from Kleene plus (+).

184

PipeProof automatically searches for concrete ISA-level patterns that can be

abstracted by user-provided invariants in each iteration of the refinement loop. The

search for patterns matching available invariants is conducted edge by edge, similar

to regex matching. Supported invariant patterns are repeated single edges (e.g.,

po) or repeated chains (e.g., po; rf). If PipeProof finds a concrete ISA-level pattern

matching an invariant, it replaces the pattern with its invariant version. On subsequent

decompositions, PipeProof’s ISA Edge Generation procedure (Section 5.3.5) restricts

the ISA-level edges that can be peeled off to those that cannot be subsumed within

an adjacent chain invariant. For example, any edge peeled off from the right of the

transitive chain in Figure 5.8c cannot be a po edge, as any such po edge is already

subsumed within the po plus edge between i2 and i4. This prevents edges matching

an invariant pattern from being peeled off a transitive chain endlessly, allowing the

refinement loop to terminate in such cases.

To help ensure verification soundness, PipeProof proves chain invariants inductively

before using them in its proofs. If the proof of any chain invariant fails, PipeProof

informs the user of the failure and does not proceed further. As an example of a

chain invariant proof, consider Figure 5.9’s invariant. PipeProof first checks the base

case—whether a single po edge between two instructions i and j guarantees that they

will be on the same core and have an edge between their Fetch stages. The po edge

mapping and theory lemmas (Section 5.3.3) guarantee this. For the inductive case,

PipeProof assumes that i and j are connected by a chain of a single po edge followed

by a po plus edge (i.e., a po-chain of arbitrary length), and that the invariant holds

for the po plus portion of the chain. It then checks if i and j are on the same core

and have an edge between their Fetch stages. This property is guaranteed by the

po edge mapping, theory lemmas, and the invariant from the induction hypothesis,

completing the proof.

185

t

i1 i2

IF

EX

WB

fr

v

i3
co

SubsetExec

u

t

i1 i2

IF

EX

WB

fr

v

i3

SubsetWithExternal

u

i4
rf

co

Figure 5.10: The load i2 in SubsetExec cannot read its value from the explicitly
modelled stores i1 or i3 without adding one of the dotted edges and making the
graph cyclic. This appears to make the execution unobservable. However, as shown in
SubsetWithExternal, another instruction i4 outside the ISA-level cycle can source
i2 while keeping the graph acyclic, making SubsetWithExternal an abstract counter-
example. PipeProof must over-approximate microarchitectural constraints to account
for instructions like i4 that are not explicitly modelled.

5.3.3 Theory Lemmas

The symbolic analysis conducted by PipeProof can allow inconsistent assignments to

µspec predicates that are incompatible with any microarchitectural execution. For

example, in any execution containing three instructions i, j, and k, if i and j have

the same data (SameData i j is true) and j and k have the same data (SameData j

k is true), then logically i and k must have the same data (SameData i k must be

true). In other words, the SameData predicate is transitive. However, naive symbolic

analysis will not require SameData i k to be true in such a case. Thus, to enforce such

constraints, PipeProof provides a set of Theory Lemmas10 for µspec predicates that is

included in every call to PipeProof’s solver. These constraints enforce universal rules

(like the transitivity of SameData) that must be respected by every microarchitectural

execution.

5.3.4 Over-Approximating to Ensure an Adequate Model

PipeProof verifies executions of an arbitary number of instructions while only modelling

a small subset of those instructions and their constraints on the execution. Some of

the instructions in an ISA-level cycle may be abstractly represented using the TC

10These lemmas are very similar to the lemmas produced by a theory solver in an SMT setup.

186

Abstraction or chain invariants, while other instructions in the execution that are not

part of the ISA-level cycle are also not explicitly modelled. For its verification to be

sound, PipeProof must ensure that the subset of an execution’s constraints that it

models is adequate: the subset must be an over-approximation of the constraints on

the entire execution. In other words, it should never be the case that an execution is

deemed to be unobservable when modelling only the subset of its constraints, but the

execution is in fact observable.

For example, consider the abstract execution SubsetExec on simpleSC in Fig-

ure 5.10, where an ISA-level cycle is abstractly represented with the help of the TC

Abstraction. Consider also the constraint (henceforth called LoadSource) on every

ISA-level execution that for every load l which does not read the initial value of

memory, there exists a store s for which s
rf−→ l, corresponding to s being the store

from which l reads its value. Instruction i2 in SubsetExec is a load (since it is the

source of an fr edge), and so must satisfy the LoadSource constraint. If PipeProof

attempted to satisfy LoadSource for i2 using only the explicitly modelled instructions,

i2 could be sourced either from i1 (i.e., i1
rf−→ i2) or from i3 (i3

rf−→ i2). If sourcing

from i1, the microarchitectural mapping of the rf edge adds a µhb edge from node t

to node u, giving us a cycle in the µhb graph. Likewise, if i3 is used as the source,

i3
rf−→ i2 maps to a µhb edge from node v to node u, once again creating a cycle in

the graph. Thus, if the analysis only considered explicitly modelled instructions, it

would deduce that all graphs for this case are cyclic (i.e., unobservable), and that this

case need not be concretized and decomposed.

However, this reasoning would be incorrect. For instance, it is perfectly valid for

an execution containing the ISA-level cycle from SubsetExec to have an additional

instruction i4 that is not part of the ISA-level cycle but sources the value of i2 (i.e.,

i4
rf−→ i2). Figure 5.10 depicts this variant as SubsetWithExternal, which satisfies

LoadSource while maintaining an acyclic graph. This indicates (correctly) that the

187

ISA-level cycle from SubsetExec is actually an abstract counterexample and must be

concretized and decomposed.

To avoid unsoundly flagging executions such as SubsetExec as unobservable,

PipeProof conservatively over-approximates by replacing every exists clause in the

µspec with a Boolean true. This suffices to guarantee an adequate model, since

exists clauses are the only µspec clauses whose evaluation can change from false to

true when an additional instruction is explicitly modelled. In the case of SubsetExec,

the over-approximation results in LoadSource always evaluating to true, ensuring that

SubsetExec is treated as an abstract counterexample as required for soundness.

This over-approximation forces PipeProof to work only with a subset of the overall

true microarchitectural ordering constraints; these may or may not be sufficient to

prove the design correct. There exist microarchitectures for which this subset is not

sufficient, and PipeProof currently cannot prove the correctness of those designs.

However, the over-approximation of microarchitectural constraints is sufficient to

prove the correctness of the designs in this chapter.

5.3.5 Inductive ISA Edge Generation

There are often an infinite number of ISA-level executions that can match a forbidden

ISA-level pattern. Thus, PipeProof must reason about these ISA-level executions

inductively to make verification feasible. PipeProof’s refinement loop inductively

models additional instructions through concretization and decomposition (Section 5.2.6

and Figure 5.6). As such, PipeProof must also inductively generate the possible ISA-

level relations that could connect these modelled instructions such that the overall

execution matches the forbidden ISA-level pattern being checked.

Given an ISA-level pattern pat, PipeProof’s ISA Edge Generation procedure

returns all possible choices (edge, remain), where edge is a possible initial or final

edge of pat, and remain is the part of pat that did not match edge. If peeling from

188

the left of a transitive chain, the procedure returns cases where edge is an initial edge.

If peeling from the right, the procedure returns cases where edge is a final edge.

For example, if decomposing a transitive chain representing the pattern

(po ∪ co); rf ; fr, the ISA Edge Generation procedure would return (po, (rf ; fr)) and

(co, (rf ; fr)) if peeling from the left, so either po or co could be peeled off. Likewise, if

peeling from the right, the procedure would return (fr, ((po ∪ co); rf)), so only fr

could be peeled off.

5.4 PipeProof Optimizations

To improve PipeProof’s verification performance and make its verification feasible for

more designs, I implemented two optimizations: the Covering Sets Optimization and

Memoization. This section explains these optimizations.

5.4.1 Covering Sets Optimization

The TC Abstraction guarantees at least one transitive connection between the start and

end of an ISA-level chain that it represents. Thus, PipeProof needs to verify correctness

for each possible transitive connection when using the TC Abstraction to represent an

ISA-level chain. As seen in Figure 5.6, a new set of transitive connections comes into

existence each time a transitive chain is decomposed. This can quickly lead to a large

number of cases to consider. Even the simpleSC microarchitecture has 9 possibilities

(3 nodes ∗ 3 nodes) for transitive connections between any two instructions. To

mitigate this case explosion, I developed the Covering Sets Optimization to eliminate

redundant transitive connections.

The key idea behind the Covering Sets Optimization is that if in a given scenario,

a and b are possible transitive connections, and every µhb graph containing a also

contains b, then it is sufficient to just check correctness when b is the transitive

189

connection. In other words, b covers a. For example, AbsCex in Figure 5.6 has a

transitive connection between nodes p and q. This transitive connection covers other

possible transitive connections such as the one from p to r used in NoDecomp. This

is because there is no possible µhb graph satisfying the microarchitectural axioms that

contains an edge from p to r without also having an edge from p to q (by transitivity).

Given a set of transitive connections conns for a given scenario along with all other

scenario constraints, the Covering Sets Optimization eliminates transitive connections

in conns that are covered by other transitive connections in the set. This optimization

significantly improves PipeProof runtime (details in Section 5.5).

5.4.2 Eliminating Redundant Work Using Memoization

Figure 5.6 shows PipeProof’s procedure for proving that simpleSC is a correct im-

plementation of SC. PipeProof first checks that all ISA-level cycles containing fr are

microarchitecturally unobservable, and then does the same for cycles containing rf ,

po, and co. However, there is notable overlap between these four cases. For example,

the ISA-level cycle po; rf ; po; fr from Figure 5.1b contains po, rf , and fr edges. A

naive PipeProof implementation would verify this cycle (directly or indirectly through

the TC Abstraction) at least 3 times: once as a cycle containing po, once as a cycle

containing rf , and once as a cycle containing fr. The redundant second and third

checks of the cycle can be eliminated.

PipeProof filters out cases that have already been verified by restricting the edges

that can be peeled off during decomposition. For example, if all ISA-level cycles

containing fr have been verified for simpleSC, then when checking all ISA-level cycles

containing po, fr edges should be excluded from the choices of edges to peel off. This

is because peeling off an fr edge would turn the ISA-level cycle being considered into

a cycle containing fr (which has already been verified).

190

Stated formally, given an ISA-level MCM property acyclic(r1 ∪ r2 ∪ ... ∪ rn), if

all ISA-level cycles containing ri have been verified ∀i < j, then the only choices for

edges to peel off when verifying cycles containing rj should be {rj, rj+1, ..., rn}. This

optimization enables my TSO case study (Section 5.5) to be verified in under an hour.

5.5 Methodology, Results, and Discussion

PipeProof is written in Gallina, the functional programming language of Coq [Coq04].

PipeProof reuses PipeCheck’s µspec parsing and axiom simplification [LSMB16], and

extends PipeCheck’s solver to be able to model and verify executions of symbolic

instructions. PipeProof’s Gallina code is extracted to OCaml using Coq’s built-

in extraction functionality. This OCaml code is then compiled into a standalone

PipeProof binary that can be run by a user.

I ran PipeProof on two microarchitectures. The simpleSC microarchitecture has a

3-stage in-order pipeline and Store→Load ordering enforced. The simpleTSO microar-

chitecture is simpleSC with Store→Load ordering relaxed for different addresses. I

verified simpleSC against the SC ISA-level MCM, while simpleTSO was verified against

the TSO ISA-level MCM. The overall specification of TSO consists of two properties:

acyclic(po loc∪ co∪ rf ∪ fr) and acyclic(ppo∪ co∪ rfe∪ fr ∪ fence) [AMT14]. The

po loc relation models same-address program order, while ppo (preserved program

order) relates instructions in program order except for Store→Load pairs (which can

be reordered under TSO). The rfe (reads-from external) edge represents when a store

sources a load on another (“external”) core, and fence relates instructions separated

by a fence in program order. In the case of TSO, fences modelled by the fence relation

enforce ordering between stores before the fence in program order and loads after the

fence in program order.

191

C
o
m

p
o
n

e
n
t

s
i
m
p
l
e
S
C

s
i
m
p
l
e
S
C

s
i
m
p
l
e
S
C

s
i
m
p
l
e
T
S
O

s
i
m
p
l
e
T
S
O

(w
/

C
ov

er
in

g
S

et
s)

(w
/

C
ov

er
in

g
S

et
s

(w
/

C
ov

er
in

g
S

et
s)

(w
/

C
ov

er
in

g
S

et
s

+
M

em
oi

za
ti

on
)

+
M

em
o
iz

a
ti

o
n

)

C
h

a
in

In
v
a
ri

a
n
t

P
ro

o
fs

0.
00

8
se

c
0.

01
se

c
0.

00
8

se
c

0
.5

se
c

0
.5

se
c

T
C

A
b

st
ra

c
ti

o
n

S
u

p
p

o
rt

P
ro

o
fs

2.
8

se
c

0.
9

se
c

0.
9

se
c

7
1
.1

se
c

6
7
.3

se
c

M
ic

ro
a
rc

h
.

C
o
rr

e
c
tn

e
ss

P
ro

o
fs

22
3.

1
se

c
35

.5
se

c
18

.2
se

c
1
9
8
1
3
.8

se
c

2
3
7
9
.5

se
c

T
o
ta

l
T

im
e

2
2
5
.9

se
c

3
6
.4

se
c

1
9
.1

se
c

1
9
8
8
5
.4

se
c

2
4
4
9
.7

se
c

T
ab

le
5.

1:
P

ip
eP

ro
of

ru
n
ti

m
es

fo
r
s
i
m
p
l
e
S
C

an
d
s
i
m
p
l
e
T
S
O

w
it

h
an

d
w

it
h
ou

t
C

ov
er

in
g

S
et

s
an

d
M

em
oi

za
ti

on
.

192

Experiments were run on an Ubuntu 16.04 machine with an Intel Core i7-4870HQ

processor. Table 5.1 breaks down PipeProof runtimes for five cases. For simpleSC,

the evaluated configurations are: (i) using vanilla PipeProof algorithms, (ii) with

the Covering Sets Optimization (Section 5.4.1), and (iii) with Covering Sets and

Memoization (Section 5.4.2). For simpleTSO, the evaluated configurations are: (iv)

using Covering Sets, and (v) with Covering Sets and Memoization. (simpleTSO was

infeasible without the Covering Sets Optimization.) PipeProof proves the correctness

of simpleSC in under four minutes using vanilla PipeProof algorithms. The Cov-

ering Sets Optimization brings runtime down to under a minute, and Memoization

reduces runtime further to under 20 seconds. Meanwhile, proving that simpleTSO

correctly implements TSO takes just over five and a half hours with the Covering Sets

Optimization. With the addition of Memoization, simpleTSO is verified in under 41

minutes.

While runtimes under an hour are quite acceptable, the verification of simpleTSO

takes more time than the verification of simpleSC because TSO’s additional relations

increase the number of possibilities for ISA-level edges that can be peeled off a transitive

chain. This has a multiplicative effect on the number of cases that need to be verified;

each peeled-off instruction may require verification across many transitive connections,

each of which may require further instructions to be peeled off. Nevertheless, with

the help of its optimizations, PipeProof’s verification of simpleTSO in under an hour

shows that complete automated MCM verification of microarchitectures can indeed

be tractable.

With regard to chain invariants, verifying simpleSC required one invariant

(po plus) to be provided to model repeated po edges. Meanwhile, verifying

simpleTSO required five invariants, for repetitions of ppo, fence, po loc, ppo followed

by fence, and fence followed by ppo.

193

PipeProof’s detection of microarchitectural bugs was quite fast. As an example, I

introduced a flaw into simpleSC relaxing Store→Load ordering. PipeProof produced

a counterexample to that flaw in under a second (both with and without the Covering

Sets optimization). Similarly, if Store→Load ordering for the same address was relaxed

on simpleTSO, the bug was detected in under 2 seconds from the beginning of the

check of the relevant ISA-level pattern.

To scale verification performance to more complicated microarchitectures, the

implementation of PipeProof’s algorithm (Section 5.2) can be parallelised. The only

dependency in the algorithm is that a given abstract execution (such as AbsCex from

Figure 5.6) must be checked before any concretizations or decompositions of it are

checked. Apart from this dependency, each abstract or concrete execution can be

checked independently of the others, making the algorithm highly parallelizable and

well-suited to the use of multicore machines and clusters to improve performance.

Adding RealityCheck’s support for modularity to PipeProof would also improve its

scalability.

5.6 Related Work

Mador-Haim et al. [MHAM11] established a bound on litmus test completeness when

comparing certain consistency models, but it is still unknown how to detect whether a

test suite is complete with respect to a given parallel system implementation. As such,

there is no way to tell whether passing a suite of litmus tests means that a design is

correct for all programs. PipeProof sidesteps this problem by conducting complete

verification of all possible programs on a microarchitecture without using litmus tests

at all.

Chatterjee et al. [CSG02] verify operational models of processor implementations

against operationally specified ISA-level MCMs. Their approach has two main steps.

194

The first step creates an abstract model of the microarchitectural implementation by

abstracting away the external memory hierarchy, and verifies it by checking a refinement

relation between the two models using model checking. The second step verifies this

abstract model against an ISA-level MCM specification using theorem-proving. They

only verify small instances (restricted to two processors, addresses, and values), while

PipeProof’s verification is complete across different core counts, addresses, and values.

They also target verification of operational models, while PipeProof targets axiomatic

models. Finally, they handle visibility order specifications, whereas PipeProof uses

more general MCM specifications such as the acyclicity of certain ISA-level edge

patterns.

The only complete proofs of microarchitectural MCM correctness that have been

conducted in prior work are those of the Kami project [VCAD15,CVS+17]. However,

Kami utilises the Coq interactive theorem prover [Coq04] for its proofs, which requires

designers to know proof techniques and requires manual effort. This is not amenable

for many computer architects. In contrast, PipeProof automatically proves microar-

chitectural MCM correctness when provided with an ISA-level MCM specification,

µspec axioms, mappings, and invariants. My development of PipeProof thus opens up

how and by whom such techniques can be used.

Prior work on automated refinement checking (e.g. Burch and Dill [BD94], Chatter-

jee et al. [CSG02]) has used operational models. In contrast, PipeProof uses axiomatic

models. To my knowledge, PipeProof is the first ever automated refinement checking

methodology and tool for pairs of axiomatic models of executions. As such, PipeProof

furthers the state of the art in refinement checking in addition to its contributions to

MCM verification.

195

5.7 Chapter Summary

The MCM verification of a hardware design must be complete (i.e., must verify across all

possible programs) in order to guarantee the correct execution of parallel programs on

that hardware. However, prior microarchitectural MCM verification approaches either

required manual proofs or only conducted bounded or litmus-test-based verification.

In response, this chapter presents PipeProof, the first methodology and tool for

automated all-program verification of axiomatic microarchitectural ordering specifica-

tions with respect to axiomatic ISA-level MCM specifications. PipeProof can either

automatically prove a specified microarchitecture correct with respect to its ISA-level

MCM or it can inform the user that that the microarchitecture could not be verified,

often providing a counterexample to illustrate the relevant bug in the microarchitec-

ture. Furthermore, to my knowledge, PipeProof is the first ever automated refinement

checking methodology and tool for pairs of axiomatic models of executions, so it makes

advances in refinement checking as well.

PipeProof’s novel Transitive Chain Abstraction allows it to inductively model

and verify all microarchitectural executions of all possible programs. This enables

efficient yet complete microarchitectural MCM verification; PipeProof is able to prove

the correctness of microarchitectures implementing SC and TSO in under an hour.

With PipeProof, architects no longer have to restrict themselves to manual proofs of

correctness of their designs in interactive proof assistants to achieve all-program MCM

verification. Instead, they can use PipeProof to automatically prove microarchitectural

MCM correctness for all possible programs, addresses, and values.

196

Chapter 6

Progressive Automated Formal

Verification

And one man in his time plays many parts,
His acts being seven ages.

—William Shakespeare
As You Like It

Validation1 of a computing system is essential to ensuring its correctness, and

can form a substantial part of the time spent developing the system. Traditionally,

validation is conducted after the implementation of a component or system has been

completed, and is carried out using testing-based methods. However, conducting

formal verification earlier in the development timeline can have important benefits,

including the ability to detect bugs earlier. At the same time, early-stage verification

is not sufficient on its own to ensure system correctness. Engineers may still make

mistakes when implementing a verified early-stage design, and post-implementation

verification is necessary to catch these bugs. Furthermore, linking early-stage verifica-

tion methodologies to post-implementation verification efforts can decrease verification

overhead, thus reducing overall verification time. Verification methodologies for inter-

1Recall that in this dissertation, I use the term validation to refer to techniques for checking or
ensuring the correctness of a system, including both testing-based methods and formal verification.
Meanwhile, I use the term verification to refer to verification using formal methods.

197

mediate points in the development timeline may be necessary to aid in this linkage, as

early-stage and post-implementation verification methodologies are often very different

and hard to connect to each other.

This chapter presents a verification flow called Progressive Automated Formal

Verification2 which advocates conducting verification at multiple points in the develop-

ment timeline and linking the verification methods at each stage together. Progressive

verification has multiple benefits, including earlier detection of bugs, reduced verific-

ation overhead, and reduced overall development time. The work in Chapters 3, 4,

and 5 can be combined to form a Progressive Automated Formal Verification flow for

MCM properties in parallel processors.

This chapter begins by covering verification in a traditional development flow

(Section 6.1). It then covers verification approaches for early-stage designs (Section 6.2),

post-implementation verification approaches (Section 6.3), and verification approaches

for evolving and detailed designs (Section 6.4). This is followed by an explanation

of the Progressive Automated Formal Verification flow (Section 6.5), which utilises

all three of these verification approaches. Section 6.5’s explanation uses the work in

Chapters 3, 4, and 5 as an example progressive verification flow. Section 6.6 then

summarises the chapter.

6.1 Testing and Verification in a Traditional De-

velopment Flow

Figure 6.1 shows a traditional development flow for a hardware or software system.

The system is first designed, then implemented, and subsequently tested and/or

formally verified. Testing is the dominant validation technique in industry today,

although industry usage of formal methods is increasing [RCD+16,NRZ+15]. Formal

2sometimes shortened to “progressive verification” for brevity.

198

Early-Stage

Design

Detailed

Design
Implementation Validation

Release to

User

Bugs found?
Increased

development

time!

Time

Figure 6.1: A traditional system development flow. Validation (testing and/or verific-
ation) begins after implementation commences, so design bugs (and sometimes even
high-level specification bugs) are only found during post-implementation verification.
The discovery of design bugs or high-level specification bugs may necessitate a re-
design, resulting in the loss of development time spent creating an implementation of
the buggy design.

methods are superior to testing-based methods as they are adept at checking all

possibilities for a given scenario, e.g., PipeProof can prove microarchitectural MCM

correctness across all executions of all programs. Bounded verification methods cannot

guarantee correctness in all possible scenarios, but are complete for the scenarios

that they do check. For example, PipeCheck can prove microarchitectural MCM

correctness for a suite of litmus tests. Meanwhile, testing-based methods cannot

guarantee verification across all programs, or even across all executions for a single

program on nondeterministic systems like today’s multiprocessors.

The design of a system may have multiple phases. For instance, design of a processor

may begin with a high-level design that becomes more detailed as development

continues. The initial high-level design might include data like the number of pipeline

stages, whether they are in-order or out-of-order, and the number and size of caches.

A subsequent detailed design would delve deeper into the inner workings of the various

components, including the protocol for memory transactions between processors,

caches, and main memory, as well as the input/output behaviour of queues and buffers.

The detailed design would also include a fine-grained structure for each pipeline stage.

Once a design is fleshed out, the hardware or software system is implemented

according to that design. This is followed by testing and/or verification of the

implementation. Continuing with the processor example, a processor is usually first

199

implemented in RTL like Verilog, which is where testing and/or verification typically

begins. Once the processor’s RTL has been written, it is tested and/or verified.

Engineers then progress to the lower-level details of implementation, like how the

transistors comprising the processor will be laid out on the chip.

The key takeaway here is that in traditional development flows like Figure 6.1,

verification typically does not begin until implementation has been at least partially

completed. However, beginning verification earlier in the development timeline can

have several benefits, as discussed next.

6.2 The Benefits of Early-Stage Design-Time Veri-

fication

Bugs in systems can arise in their designs, their implementations, or even their high-

level specifications. Design bugs are cases where a system’s design is incorrect and

does not correspond to the high-level specification’s requirements. If a design bug

exists, the system will not function correctly with respect to higher-level requirements

even if the implementation faithfully implements the design. An example design bug

would be the use of an out-of-order pipeline (without enforcing ordering through

an alternative mechanism) in a processor design that has an MCM of SC. (The

ISA-level MCM functions as the high-level specification in this example.) Meanwhile,

implementation bugs occur when engineers unintentionally introduce flaws during

system implementation, causing the implementation to not match the design. For

instance, if the RTL of a cache only returns the lower 30 bits at a memory address in

response to a processor’s 32-bit load operation, this would constitute an implementation

bug.

Bugs may also occur in high-level specifications themselves. For instance, designers

may choose an ISA-level MCM for their processor that they believe allows the mi-

200

croarchitectural optimizations they wish to include. However, subsequent verification

may discover that the MCM is too strong and forbids some of their optimizations.

The MCM may also be too weak to interface with high-level languages.3 If the ISA

for the processor has not yet been released, the designers may decide to change its

MCM to fix these issues, rather than modify their designs. Thus, a given issue may

be classified as a design bug or a high-level specification bug depending on designer

intent, provided that the high-level specification has not been set in stone.

While implementation bugs can only be caught during or after implementation,

design bugs and high-level specification bugs can be caught during the design phase

itself. Validation approaches based on dynamic testing require an implementation

in order to validate a system, and so are not a good fit for design-time validation.

However, formal verification can be conducted on a model of the design and so is

well-suited for this purpose. For instance, PipeCheck [LPM14,LSMB16] (Section 2.4)

and PipeProof (Chapter 5) are examples of early-stage verification tools for MCM

properties in hardware designs. Likewise, CheckMate [TLM18a] is an example of an

early-stage verification tool for hardware security properties. Early-stage verification

has generally not been conducted for hardware designs in prior work, except for a few

specific types of features like cache coherence protocols [PNAD95,ZLS10,ZBES14].

(The work of Vijayaraghavan et al. [VCAD15] is a notable exception to this rule, and

is covered in Section 2.3.4.) Early-stage verification is more prominent for software

systems, e.g., Memalloy [WBSC17] and distributed protocol verification [PLSS17].

In a traditional development flow like Figure 6.1, design bugs, implementation

bugs, and sometimes even high-level specification bugs are discovered during post-

implementation verification. Thus, if the design or high-level specification contained

a bug, engineers would spend time and effort implementing the buggy design, only

3TriCheck [TML+17] enables users to verify (on a per-test basis) that their choice of ISA-level
MCM is compatible with their choices of microarchitectural optimizations and the requirements of
high-level language MCMs.

201

to have to re-implement the relevant parts of the system once a re-design fixed the

design or high-level specification bug. The development time spent creating the

implementation of the incorrect design (which may be a significant duration) is thus

wasted. Alternatively, engineers may eschew a re-design and implement a heavy-

handed fix that notably reduces the capabilities of the system. In either case, the

outcome is undesirable.

Using approaches like PipeCheck, PipeProof, and CheckMate for early-stage

verification helps catch design and high-level specification bugs right at design time,

so they can be fixed before implementation commences. This eliminates the time that

would otherwise be spent creating implementations of incorrect designs, thus reducing

overall development time.

In addition, early-stage verification can reduce the overhead of post-implementation

verification (Section 6.3) if the two approaches are linked to each other. For example,

if a µspec model of a design is verified through PipeProof as correctly implementing

its MCM, then the eventual RTL implementation of that design need only ensure

that it satisfies the individual axioms of the µspec model to ensure MCM correctness.

RTLCheck (Chapter 3) enables such post-implementation verification for litmus tests.

In this scenario, the low-level RTL implementation no longer needs to be verified

against the ISA-level MCM directly. Such verification would be harder than verifying

against µspec axioms, as the ISA-level MCM is a high-level property which is quite

far removed from the low-level details of an RTL implementation.

Despite its advantages, design-time verification is not a panacea. Even if a design

has been formally verified, engineers may introduce implementation bugs as they

implement and refine the design. Post-implementation verification (discussed next) is

essential to ensure the system’s correctness before its release to the end user.

202

6.3 The Need for Post-Implementation Verifica-

tion

Post-implementation validation is the traditional method of ensuring hardware and

software system correctness today. Such validation is critical to ensuring that the

implementation released to end users is in fact correct. There has been a plethora of

work on post-implementation formal verification. Some of this work uses automated

approaches like model checking, e.g., CBMC [CKL04] for checking properties of C

programs. Other approaches may include manually proving system correctness in a

proof assistant like Coq and then extracting an implementation, e.g., Kami [CVS+17]

for hardware verification (Section 2.3.4). Sections 2.3.2, 2.3.4, and 3.10 cover the prior

work on post-implementation verification that is most relevant to this dissertation.

RTLCheck (Chapter 3) is a methodology and tool for automated post-implementation

MCM verification.

While industry usage of formal methods is increasing [RCD+16,NRZ+15], testing-

based methods remain the primary method of post-implementation validation in

industry today. These testing-based methods cannot ensure comprehensive verification

coverage, and lead to bugs slipping through validation into the released product.

Such bugs can have serious consequences, including Internet outages [Str19] and car

crashes [Lee19]. Current industry practices have proven insufficient for catching bugs

in recent years, ranging from security vulnerabilities like Meltdown [LSG+18] and

Spectre [KHF+19] to network errors [BGMW17] to MCM issues [ARM11].

While software is relatively easy to patch when bugs are found, hardware im-

plementations are difficult or impossible to modify after their release. As a result,

post-release fixes for hardware bugs are often heavy-handed and can notably impact

processor performance. One such bug was a TLB4 issue (Erratum #298) in AMD

4Translation Lookaside Buffer, a cache for virtual to physical page mappings.

203

Phenom processors [AMD12] that could lead to data corruption and loss of coherence.

AMD initially5 had to fix this bug with a BIOS patch that prevented TLBs from look-

ing in the cache for page table entries, which caused a slowdown of about 10% [Shi08].

Likewise, the transactional memory functionality in Intel Haswell processors was found

to be buggy after their release [Hac14]. To work around the issue, Intel disabled the

transactional memory functionality in Haswell processors, reducing their capabilities.

Post-implementation verification should use formal methods as much as possible

in order to ensure better verification coverage, thus reducing or eliminating bugs in

the released product. This is especially important for hardware due to its inability to

be modified after release. In addition, the formal methods used should be automated

approaches like model checking (Section 2.2.1). This will allow hardware and software

engineers who do not have deep formal methods expertise to verify the systems

by themselves, rather than having to rely on the relatively small number of formal

methods experts. For these reasons, the Progressive Automated Formal Verification

flow (Section 6.5) proposed by this dissertation recommends the use of automated

formal verification.

6.4 Verification at Intermediate Points in the De-

velopment Timeline

Early-stage design-time verification and post-implementation verification are both

key to ensuring a system’s correctness. However, a system evolves significantly as it

progresses from early-stage design through to a final detailed design. Design bugs

may be introduced at any point in this evolution. It is important to detect these

bugs as early as possible so as to minimise the time that engineers spend creating

5A subsequent stepping of the Phenom processor included a hardware fix for the issue [AMD12,
Shi08].

204

implementations of incorrect designs. This necessitates the continued verification of

designs as they evolve and become more detailed.

Early-stage verification tools may not be a good fit for verifying evolving designs,

necessitating the creation of verification tools specifically for such evolving designs.

For instance, as Section 4.2.2 covers, the monolithic MCM verification of early-stage

verification tools like PipeCheck and PipeProof does not scale to detailed models

of large designs. Furthermore, their monolithic specification format is a bad fit for

the distributed nature of processor design. Monolithic specifications also make it

hard to replace pieces of the design specification over time as the design evolves. As

a result, these tools are insufficient for MCM verification of evolving and detailed

designs. RealityCheck (Chapter 4) was created specifically to be capable of efficiently

verifying designs as they evolve and become more detailed.

Verification tools for intermediate points in the development timeline can also

facilitate the linkage of early-stage verification to post-implementation verification.

As Section 6.2 covers, the linkage of early-stage verification to post-implementation

verification can reduce the overhead of post-implementation verification. However,

early-stage designs are quite far removed from the low-level realities of implementations,

making them hard to link to each other. For instance, the early-stage MCM verification

of a tool like PipeProof is based on omniscient µspec axioms (Section 4.2.2) that do not

reflect the structural modularity of RTL implementations. As Section 4.7 covers, SVA

assertions generated from such omniscient µspec axioms using a tool like RTLCheck

(Chapter 3) are limited in their scalability because they must be evaluated over the

entire RTL implementation. On the other hand, RealityCheck’s µspec++ axioms

take into account the design’s structural modularity and are scoped to individual

modules. As a result, SVA assertions generated from these µspec++ axioms will be

scoped to individual modules as well. These generated assertions will thus only need

205

Formal

Model

Formal

Model

High-Level

Spec.

Early-Stage

Design

Detailed

Design
Implementation

Verify

against

Verify against

Verify against

Release to

User

Time

Figure 6.2: An idealised version of the Progressive Automated Formal Verification
flow. Verification is conducted at multiple points in the development of the system
(starting at early-stage design), and the verification methods at each stage are linked
to each other. The flow can have more or fewer stages depending on the needs of the
system and the choices of the engineers involved. Progressive verification provides
earlier detection of bugs, reductions in development time and verification overhead,
and the strong correctness guarantees of formal verification.

µspec++ Modelµspec Model

ISA-Level MCM

Spec.

Early-Stage

Microarchitecture

Detailed

Microarchitecture

Implementation in

RTL

Verify with

PipeProof

Verify with

RTLCheck

Verify with

RealityCheck

RTL synthesis,

Layout, …

Time

Figure 6.3: A Progressive Automated Formal Verification flow for MCM properties in
parallel processors. PipeProof (Chapter 5) provides MCM verification of early-stage
designs, RealityCheck (Chapter 4) provides MCM verification of detailed designs, and
RTLCheck (Chapter 3) provides post-implementation MCM verification.

to be evaluated over part of the RTL implementation, significantly improving their

scalability.

6.5 Progressive Automated Formal Verification

Early-stage, intermediate, and post-implementation verification all have their own

advantages and disadvantages. If all of these verification methodologies could be used

in concert with each other and linked together, it would make system verification

206

more thorough and efficient. This is the key idea underlying Progressive Automated

Formal Verification, a verification flow proposed by this dissertation. The rest of this

section explains the details of Progressive Automated Formal Verification.

Figure 6.2 shows an idealised flow for Progressive Automated Formal Verification.

Meanwhile, Figure 6.3 shows the specific instance of the progressive verification flow

that applies to MCM properties in parallel processors. This instance of the flow utilises

the work in Chapters 3, 4, and 5, i.e., the RTLCheck, RealityCheck, and PipeProof

tools respectively.

As Figure 6.2 shows, progressive verification begins verification right at the point

of early-stage design, in contrast to traditional verification (Figure 6.1). During

early-stage design, formal models of the system are created and automatically verified

against higher-level requirements. For example, if verifying hardware MCM properties,

the verification task at this stage would be to create a µspec model of the processor

and verify it against the ISA-level MCM using PipeProof (Chapter 5), as shown in

Figure 6.3.

As the design evolves and becomes more detailed, progressive verification requires

that the formal model evolve along with it to reflect such detail, as shown in Figure 6.2.

The evolution of the design will likely also coincide with more people being involved

with it, making the formal model something that a large number of individuals will be

involved with editing. Verification should continue to be conducted as the design (and

its model) evolve to ensure that bugs are not introduced while adding the additional

detail. The detailed design can be verified either against the early-stage design or

against the higher-level properties being verified, depending on the preference of the

engineers and the relative difficulty of the two verification tasks. The modelling

and verification frameworks used should facilitate the evolution of the design as it

progresses.

207

In the case of MCM verification, the RealityCheck framework (Chapter 4) fulfills

the requirements of modelling and verification for evolving and detailed designs, as

seen in Figure 6.3. Initially, users can create a coarse-grained µspec++ model of

the processor in RealityCheck and compare it (up to a bound) to the model verified

using PipeProof. They may also verify it directly against ISA-level litmus tests, as

Figure 6.3 shows (and as explained in Chapter 4). Then, as the design of various

components is fleshed out, the specifications for those components can be replaced

with their more detailed versions. Interface verification (Section 4.4) can be used

to ensure that the detailed specification is correct with respect to the component’s

requirements. The modularity of RealityCheck also allows different teams to modify or

replace the specification of their components (and verify them against their interfaces)

independently of other teams. This ensures that the distributed nature of the hardware

design process is not impeded by the use of RealityCheck.

In a progressive verification flow, early-stage and intermediate-stage verification

reduce the verification load on post-implementation verification. Instead of having

to verify the implementation directly against higher-level properties, engineers and

developers only need to verify their implementations against the formal specifications

whose correctness has been checked by verification at earlier stages. In the case of

progressive MCM verification (Figure 6.3), RTLCheck provides post-implementation

verification. Using RTLCheck, the processor’s Verilog is formally verified against µspec

axioms (on a per-test basis) whose composition would ideally have been previously

proven correct using PipeProof. This is notably easier than trying to verify the

low-level Verilog directly against the high-level ISA MCM specification, as they are

quite far removed from each other.

Ideally, the Verilog would be checked against SVA properties translated from a

RealityCheck µspec++ model, as the µspec++ would be more detailed and easier

to relate to RTL. Furthermore, the modularity of µspec++ axioms would enable

208

scalable per-component verification of the RTL. Section 4.7 provides further details.

The linkage of RTLCheck directly to µspec axioms rather than to µspec++ axioms

from a RealityCheck model is due to RealityCheck being developed chronologically

after RTLCheck.

Progressive verification has a number of benefits, as listed below:

• Earlier Detection of Bugs: Progressive verification begins verification right

at the point of early-stage design, and continues to verify the design as it evolves.

Thus, design bugs and high-level specification bugs are caught under progressive

verification before implementation begins, in contrast to traditional verification

(Figure 6.1) where they are caught post-implementation.

• Reduced Overall Development Time: Progressive verification’s early de-

tection of design bugs and high-level specification bugs means that engineers do

not spend time creating implementations of incorrect designs. This can reduce

overall development time when compared to a traditional development flow.

• Reduced Verification Overhead: Many properties are easier to verify at a

higher level of abstraction than at a lower level. For instance, RTLCheck runtimes

(Section 3.9) far exceed those of PipeProof (Section 5.5) for similar designs. This

is despite PipeProof verifying MCM properties for microarchitectural designs

across all programs and RTLCheck only verifying µspec axioms for litmus tests.

Thus, verifying properties at a higher level of abstraction when possible will

reduce the overhead of verification. This is especially critical for hardware

design, where verification costs now dominate total hardware design cost [Fos15].

Progressive verification begins verification at early-stage design, ensuring that

as much verification as possible is conducted at high levels of abstraction and

thus at lower overhead.

209

• Strong Correctness Guarantees: The formal methods utilised at each stage

of progressive verification ensure thorough verification of a system’s design and

implementation for the properties being verified. The formal nature of the

verification enables engineers to provide strong correctness guarantees about

the systems they build, as opposed to the weaker guarantees of testing-based

methods. Systems verified using a progressive flow will be released to users with

minimal or no bugs.

The work in Chapters 3, 4, and 5 can be combined to create a concrete instance

of the progressive verification flow for MCM properties in parallel processors, as

Figure 6.3 shows. This dissertation thus serves as a reference point for the future

development of progressive verification flows for other types of properties and systems,

such as for hardware security verification or compiler verification (see Section 7.3.3).

The verification methodologies used in a progressive flow would ideally be complete,

i.e., they would verify across all possible programs. In the absence of automated

all-program verification approaches for a given point in the development timeline,

bounded verification approaches can be used instead. In the case of progressive MCM

verification (Figure 6.3), PipeProof accomplishes all-program verification for early-

stage verification. Meanwhile, RealityCheck and RTLCheck are the first methodologies

and tools to provide automated intermediate-stage and post-implementation MCM

verification for parallel processors, but they cannot verify across all programs. Building

on RealityCheck and RTLCheck to develop methodologies capable of verifying MCM

properties on detailed designs and RTL across all programs is an avenue of future

work (Section 7.3.1). It should be possible to use RealityCheck and RTLCheck as a

base for such all-program verification, given that PipeProof built on PipeCheck to do

the same for early-stage designs.

A progressive verification flow need not have exactly three stages. Depending

on how far removed early-stage design is from the eventual implementation of the

210

system in question, engineers may choose to have more than one stage of intermediate

verification between early-stage verification and post-implementation verification. On

the other hand, if the system is simple enough that early-stage designs can be easily

linked to low-level implementations, a distinct intermediate verification stage may

not be necessary. The key idea is to conduct verification throughout the development

timeline (as opposed to just post-implementation) and to link the verification methods

at each stage together.

6.6 Chapter Summary

Validation of a system is crucial to ensure its correctness before it is released to the

end user. In conventional development flows, validation generally takes place post-

implementation and uses primarily testing-based methods. Beginning validation this

late in development leads to design bugs and sometimes even high-level specification

bugs not being discovered until after the design has been implemented. Furthermore,

testing-based methods can easily miss bugs and are insufficient for ensuring system

correctness.

In response, this chapter proposes a verification flow called Progressive Automated

Formal Verification, which advocates for automated verification at multiple points

in the development timeline, beginning with the verification of early-stage designs.

Design-time verification detects design bugs and high-level specification bugs earlier

than traditional practices, and can help eliminate certain classes of bugs before

implementation commences. This reduces or eliminates the amount of time engineers

spend creating implementations of incorrect designs, thus reducing overall development

time.

Progressive verification also recommends linking the verification methods at dif-

ferent stages to each other. The linkage of early-stage verification methodologies to

211

post-implementation verification can reduce overall verification overhead by verifying

design properties at a higher level of abstraction. This linkage may be facilitated by

the appropriate use of modelling and verification at an intermediate point in the devel-

opment timeline. The formal nature of the verification in a progressive flow provides

the strong correctness guarantees necessary for today’s systems. The automation of

the verification allows hardware and software engineers to formally verify their systems

by themselves, without needing to rely on formal methods experts.

In addition to proposing the philosophy of progressive verification, this dissertation

also enables the progressive verification of MCM properties in parallel processors. The

work in Chapters 3, 4, and 5, when combined, forms a progressive verification flow

for hardware MCM properties. The progressive verification flow itself is applicable to

other domains beyond MCM verification, including hardware security verification and

compiler verification.

212

Chapter 7

Retrospective, Future Directions,

and Conclusion

“This isn’t the end. There is no end.”

—Hotta Yumi (translated)
Hikaru No Go

This chapter begins (Section 7.1) by situating the work in this dissertation in the

context of the hardware/software stack. Specifically, all the work in this dissertation

is part of the “Check suite”, a set of methodologies and tools for MCM verification

from high-level languages down to RTL. Section 7.2 then examines lessons learned

retrospectively from doing the research presented in this dissertation. Section 7.3 then

outlines avenues of future work that can build on the advances in this dissertation.

The chapter ends with the conclusions of the dissertation (Section 7.4).

7.1 Zooming Out: The Check Suite for MCM Veri-

fication

The Check suite [LPM14,MLPM15,LSMB16,TML+17,MLMP17,MLMG18,MLM20]

comprises a set of methodologies and tools developed at Princeton for automated MCM

213

High-Level

Language (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)
RTLCheck
[MLMP17]

TriCheck
[TML+17]

COATCheck
[LSMB16]

CCICheck
[MLPM15]

PipeProof
[MLMG18]

RealityCheck
[MLM20]

My Work in the Check Suite

Other Check Suite Tools

PipeCheck
[LPM14]

Figure 7.1: The Check suite of MCM verification tools developed at Princeton over
the past 7 years. Each tool is positioned based on the layers of the hardware/software
stack that it operates at. All of my work that is presented in this dissertation is part
of the Check suite.

verification across the hardware/software stack, from high-level languages (HLLs)

to RTL. Figure 7.1 depicts all the tools in the Check suite, shown according to the

layers of the hardware/software stack they work at. PipeCheck [LPM14, LSMB16]

(Section 2.4) was the initial tool in the Check suite. All later Check suite tools built

on PipeCheck’s initial modelling framework to accomplish their goals. The RTLCheck

(Chapter 3), RealityCheck (Chapter 4), and PipeProof (Chapter 5) tools presented in

this dissertation are part of the Check suite.

In addition to the work presented in this dissertation, I was also a co-author on

the CCICheck [MLPM15] and TriCheck [TML+17, TML+18] tools from the Check

suite. CCICheck and TriCheck are not discussed in detail in this dissertation due to

length constraints. I provide a brief description of each tool below.

CCICheck conducted coherence1-aware microarchitectural MCM verification that

was capable of modelling cache occupancy and coherence protocol events related

to MCM verification. This allowed it to model architectures with nMCA coherence

protocols as well as partially incoherent microarchitectures like some GPUs. CCICheck

also enabled the modelling of coherence protocol features (e.g., the livelock-avoidance

1Section A.5 covers the basics of cache coherence and coherence protocols.

214

mechanism in the “Peekaboo” scenario [SHW11]) and their impact on MCM behaviour.

CCICheck discovered a bug in the TSO-CC lazy coherence protocol that could result

in an MCM violation [Elv15].

Meanwhile, TriCheck enabled users to formally verify hardware-software MCM

compatibility for suites of litmus tests. As input, TriCheck takes a litmus test in

a high-level language (HLL) like Java or C++, a compiler mapping2, and a µspec

microarchitecture specification. TriCheck automatically translates the HLL litmus test

into its ISA-level equivalent using the provided compiler mapping, and then formally

verifies whether the forbidden outcome of the HLL litmus test is observable on the

microarchitecture specified by the µspec. TriCheck is useful both when designing the

ISA-level MCM for a new architecture as well as for validating compiler mappings

for a given HLL-ISA pair. TriCheck discovered numerous issues in the draft MCM

specification of the open-source RISC-V ISA, and spurred the creation of the RISC-V

memory model working group (of which I am a member) to develop a new formally

specified MCM for RISC-V. A new MCM fixing the issues TriCheck discovered (and

other issues) was ratified in September 2018 [RIS19].

TriCheck also discovered two counterexamples to compiler mappings from C/C++

atomics to the Power and ARMv7 ISAs. These mappings had supposedly been proven

correct previously [BMO+12], but I isolated the flaw in the supposed proof that allowed

the invalid mappings to slip through [MTL+16]. These findings by my co-authors

and myself led to the discovery that the C/C++ memory model was unintentionally

slightly stronger than necessary, precluding the use of efficient mappings for it for

weaker architectures like Power and ARMv7. Lahav et al. [LVK+17] concurrently and

independently discovered the same underlying issue. They also proposed a fix to this

issue that has since been adopted by the standards committee.

2A compiler mapping is a translation scheme from high-level language synchronization primitives
(e.g., C/C++ atomic operations) to assembly language instructions for a given ISA.

215

7.2 Lessons Learned: A Retrospective

The methodologies and tools developed by this dissertation all break new ground in

automated hardware MCM verification. However, certain choices that I made when

conducting this research made the development of my tools harder than it could

have been. If I were to redo the research in this dissertation knowing what I know

now, I would make two changes in my approach. Specifically, I would attach greater

importance to supporting operational models in my work, and I would create a strong

type system for the µspec language and its successors like µspec++ (Section 4.5).

This section examines these lessons learned in detail, in the hope of making researchers

aware of the issues involved. This knowledge will ideally help other researchers make

better choices when conducting similar research in the future.

7.2.1 Importance of Operational Model Support

Section 2.2.3 describes two prominent modelling styles in formal MCM analysis:

operational models and axiomatic models. Operational models describe a system

being modelled as a transition system (Section 2.2.1), while axiomatic models describe

a system using a set of invariants that hold in it.

PipeCheck chose to use axiomatic modelling for its µspec specifications, and

provided no support for operational modelling of microarchitectures. Axiomatic

models have notable benefits for MCM verification, namely concise specification and

efficient verification [AMT14]. Thus, PipeCheck’s choice of axiomatic modelling had

significant advantages.

As seen in Chapters 3, 4, and 5, I chose to follow PipeCheck and only use axiomatic

models for microarchitectural ordering specification and verification. However, this

choice of purely axiomatic modelling has three disadvantages when compared to

including support for operational models. Firstly, it makes it harder to link µspec

216

models to RTL. Secondly, axiomatic models make it harder to model scenarios where

a program changes over time (like self-modifying code). Thirdly, the invariant-based

approach of axiomatic models makes it hard to write specifications for certain hardware

behaviour. The rest of this section details the nature of these disadvantages.

Linking to RTL

Axiomatic models like µspec specifications are tricky to link to operational models

like RTL. RTLCheck (Chapter 3) accomplished the linkage of µspec specifications

to RTL and the soundness verification of µspec specifications by translating µspec

axioms to test-specific SVA assertions. Part of the difficulty in translating µspec

axioms to SVA lies in the fact that the logics and semantics of µspec and SVA are

starkly different from each other. A set of µspec axioms forms an axiomatic model of

microarchitecture, while SVA assertions are evaluated over an operational model of

RTL [CDH+15].3 If I had developed or used a method for specifying microarchitectural

orderings operationally rather than axiomatically, those orderings would be easier to

relate to RTL. Correspondences between microarchitectural states and RTL states

could then be used to relate the two operational models for verification. This is the

approach used by prior work, e.g., Burch and Dill [BD94] and ISA-Formal [RCD+16].

Modelling Program Change Over Time

Operational models are also generally better suited than axiomatic models to represent

scenarios where the program being modelled changes over time. For instance, when

self-modifying code executes, the program being run by the processor changes as it runs.

However, in axiomatic frameworks like herd (Section 2.3.1), PipeCheck (Section 2.4),

RealityCheck (Chapter 4) and PipeProof (Chapter 5), the entire program being run

3In an operational model of RTL, the values of the wires and regs in any given cycle constitute a
state. A state s1 can transition to a state s2 if and only if the RTL allows the values of the wires
and regs in s1 to change to those of s2 in one clock cycle.

217

(including the values returned by all loads) is known right at the outset and can be

seen by all axioms. There is no notion of allowing the program instructions to change

as the execution progresses. Axioms are evaluated on executions as a single unit.

On the other hand, in an operational framework, instructions can be executed

piece-by-piece through state transitions, just like they are executed by a real processor’s

pipeline stages. Modification of the program is simply an update to the portion of the

state that represents instruction memory, and can be conducted at an arbitrary point

in an execution trace. If my work had provided a way to specify microarchitectural

orderings operationally, it would have made it easier to model behaviour like self-

modifying code.

Modelling Certain Hardware Structures

Axiomatic models describe systems in terms of invariants that the system upholds.

These invariants are often straightforward to write for an entire system, but more

difficult to write for certain parts of the system considered in isolation. For in-

stance, consider the property of coherence. Most architectures implement per-location

SC [AMT14, Int13,ARM13, IBM13,RIS19], which is slightly stronger than coherence.

This property is straightforward to specify at the ISA level in herd for an entire

processor as acyclic(po loc ∪ co ∪ rf ∪ fr). It is also straightforward to specify this

property as a µspec axiom for an entire microarchitecture. Such an axiom would

simply enforce an order between the memory hierarchy nodes or ViCLs4 of any two

writes to the same address.

However, what are the invariants for a single cache in a microarchitecture imple-

menting a typical coherence protocol? The answer to this question is not so simple.

These invariants would form the µspec++ axioms for the module representing that

cache in a RealityCheck (Chapter 4) specification. The invariants do exist, and so

4An abstraction developed by CCICheck [MLPM15] to model cache occupancy and coherence
events.

218

RealityCheck is indeed capable of modelling coherent caches. Even so, the difficulty

in coming up with such invariants makes it somewhat difficult to model such caches

in an axiomatic framework like RealityCheck.

On the other hand, specifying the behaviour of a single cache in a coherence protocol

operationally is much more straightforward. Coherence protocols are routinely specified

using state transition tables for each component in the protocol [SHW11], e.g., caches,

main memory, directories. Such a transition table represents the states and transition

relation of an operational model, making the construction of an operational model for

such a protocol easy to do. If I had developed RealityCheck to allow certain modules

to be specified operationally, it would be easier to specify hardware modules such as

coherent caches.

Overall, both axiomatic and operational models each have their own advantages

and disadvantages. Thus, it is desirable to have a single modelling framework that

supports both operational and axiomatic models, as well as the ability to automatically

convert between the two. Section 7.3.2 provides further details on this avenue of future

work.

7.2.2 Benefits of a Type System for µspec and µspec++

PipeCheck developed the µspec domain-specific language to model microarchitectural

orderings. µspec does not have a formally specified type system, and I did not create

one for the language (or its successor µspec++) in the course of my dissertation

research. A type system for a programming language can have several benefits [Pie02].

It makes it easy to detect certain classes of bugs, such as when the wrong number of

arguments are provided to a function, or when one of the function’s arguments has an

incorrect type. Typing can also help ensure that a program does not get “stuck”, i.e.,

reach a state where it is impossible to continue evaluation.

219

In µspec, if a user uses a predicate that does not exist or supplies an incorrect

number of arguments to a predicate, PipeCheck and the tools in this dissertation do

report that the predicate could not be found. However, these tools do not provide

further detailed information about the error. A formal type system for µspec would

facilitate providing such detailed error information. Users could be notified of both the

type of the predicate they were trying to use and the expected type for that position

in the specification, e.g., “Line 24: Predicate ‘IsAnyWrite’ has 2 arguments, 1

expected”. Such information is readily available in compile errors for languages with

rich type systems like Gallina.5

The value of a type system to a language for specifying microarchitectural orderings

increases as the language becomes richer and incorporates more features. Such

advancements to µspec were indeed added by the work in this dissertation, most

prominently in Chapter 4. The µspec++ domain-specific language (Section 4.5) that

I developed as part of RealityCheck adds support for modularity, hierarchy, and

abstraction to µspec.

In RealityCheck, modules have internal and external nodes, corresponding roughly

to events on internal and input/output signals in Verilog respectively. As Section 4.5.2

covers, a module should trigger certain events (external nodes) in another module but

not others. For instance, the implementation axiom of the Mem module in Figure 4.10

does not assume that a request (Req) node exists for a given transaction. The request

must be triggered by another module, like the Core. Similarly, the Core cannot assume

that the response to its request will arrive; the response’s existence must be enforced

by axioms in the Mem module.

Ideally, one would want to annotate external nodes as either being input or

output with respect to a given module. A module would only be able to enforce the

existence of its own output events and the input events of other modules, similar

5Gallina is the functional programming language of the Coq proof assistant. The majority of the
Check suite is written in Gallina.

220

to how input/output signals are treated in Verilog. Capturing the specific patterns

in µspec++ that enforce the existence of certain nodes is somewhat tricky due to

µspec++ not being a general-purpose programming language. However, annotations

of node input/output attributes and reasoning about them could be encoded in a type

system. A type check of the resulting µspec++ specification would then be able to

flag any instances where a module was incorrectly enforcing the existence of certain

nodes, e.g., if Figure 4.10 was enforcing the existence of the Req node for a transaction.

Thus, the type system would effectively eliminate this class of bugs.

Given the advantages of type systems for general-purpose programming languages,

there are likely other advantages to having a strong type system for µspec, µspec++,

and other languages that build on them. These advantages stand to increase as

hardware ordering specifications become richer and capable of describing new hardware

features, such as those in emerging accelerator-rich architectures (Section 7.3.4).

7.3 Future Work

The advances in this dissertation set up a number of exciting lines of future work.

This section details these future work ideas in broad strokes.

7.3.1 Furthering Automated All-Program MCM Verification

A multicore processor must obey its MCM for any program that it runs. As such, to

truly ensure MCM correctness in all possible scenarios, hardware MCM verification

must be complete, i.e., cover all possible programs. PipeProof (Chapter 5) demon-

strates how to conduct automated all-program microarchitectural MCM verification.

However, MCM bugs may be introducted later in development after PipeProof’s

early-stage verification has been conducted. Thus, PipeProof alone cannot ensure the

MCM correctness of a taped-out chip across all programs.

221

As Chapter 6 covers, RealityCheck (Chapter 4) and RTLCheck (Chapter 3) are

intended for MCM verification after PipeProof, i.e., later in the development timeline.

It is their responsibility to ensure that MCM bugs do not enter the design or im-

plementation after it has been verified with PipeProof. While RealityCheck and

RTLCheck break new ground in scalable MCM verification and the MCM verification

of RTL, they only verify litmus tests or executions up to a bounded length, and do not

verify across all programs. Thus, while their verification is extensive, RealityCheck

and RTLCheck leave open the possibility for MCM bugs to enter development after

PipeProof’s verification is conducted. As an example, a user may verify a microarchi-

tecture’s µspec specification using PipeProof, and then verify that RTL satisfies the

microarchitecture’s µspec axioms for a suite of litmus tests using RTLCheck. Even if

they do so, it is possible (though unlikely) that the RTL does not satisfy the µspec

axioms for a program that is not in the litmus test suite. If this is the case, then the

RTL contains an MCM implementation bug and is incorrect.

To ensure all-program correctness of a taped-out chip, all MCM verification

methodologies used in the development timeline must be complete. PipeProof built

on the litmus test-based verification of PipeCheck (Section 2.4) to develop its all-

program verification methodology. Similarly, future work can build on RealityCheck

and RTLCheck to develop automated all-program MCM verification methodologies for

detailed designs and RTL respectively. When combined with PipeProof, the resultant

set of three tools would constitute a progressive verification flow (Section 6.5) for

MCM properties that ensures correctness across all programs. This will ensure that

from early-stage design through to the end of RTL implementation, no MCM bugs

exist in the processor.

The need for all-program verification also exists for software that is part of MCM

implementations, like compilers. A compiler mapping must be verified to ensure that

any HLL program compiled with it will maintain the guarantees of the HLL MCM

222

(provided that the hardware is correct). TriCheck [TML+17] provided early-stage

MCM verification of compiler mappings across litmus tests using an approach based

on PipeCheck and herd [AMT14]. Future work can build on TriCheck to develop

an automated all-program MCM verification methodology for compiler mappings, as

PipeProof did with PipeCheck.

7.3.2 A Unified Modelling Framework Supporting Axiomatic

and Operational Models

As Section 2.2.3 describes, operational and axiomatic models each have their own

advantages and disadvantages. Axiomatic models tend to enable concise system

specifications and more efficient verification methodologies than those for operational

models. On the other hand, users may find it easier to specify a system using an

operational model, since doing so does not require knowledge of the invariants of the

system. Operational models may also be more intuitive because they tend to resemble

the systems that they model, especially in the case of hardware.

The axiomatic modelling used by the Check suite enables the concise specifications

and efficient verification methodologies of its tools, including RealityCheck (Chapter 4)

and PipeProof (Chapter 5). However, as Section 7.2.1 describes, the use of operational

modelling would have made certain verification tasks easier, such as linking to RTL.

Ideally, one would have two specifications for a given system, one axiomatic and

one operational, and the two would be proven to be equivalent to each other. Each

specification could then be used in the scenarios where it would be most beneficial.

For instance, if modelling microarchitectural orderings, one would use the axiomatic

specification for microarchitectural MCM verification but the operational version for

linking to RTL.

Currently, to get the benefits of both operational and axiomatic models, formal

methods researchers create both types of specifications and then manually prove them

223

equivalent to each other [OSS09,MHMS+12,AMT14,PFD+18]. A more optimal ap-

proach would be to have a method to automatically generate an equivalent operational

model for a given axiomatic model (and vice versa). The insights I gleaned from

developing RTLCheck’s procedure for translating µspec axioms to SVA assertions

(which run on an operational model) may prove useful to enable this conversion. In ad-

dition, for the case of generating an axiomatic model from an operational specification,

invariant synthesis techniques like I4 [MGJ+19] may be beneficial.

Another issue covered in Section 7.2.1 is that certain systems (or parts of systems)

are easier to specify axiomatically, while others are easier to specify operationally.

Ideally, one would be able to specify components of a system in the manner most

intuitive to that component, and then connect the various components together to

generate the overall system specification. The ILA-MCM [ZTM+18] framework that

I was part of accomplished connection between an operational model of instruction

semantics and an axiomatic concurrency model based on µspec axioms. Future work

can build on this research to develop a generic framework capable of supporting and

connecting both operational and axiomatic models.

To summarise, an important line of future work in formal modelling is to develop or

modify a modelling framework to support (i) the specification of both operational and

axiomatic models, (ii) the straightforward connection of operational and axiomatic

components of a model to each other, and (iii) the automatic generation of an equivalent

operational model for a given axiomatic model (and vice versa).

7.3.3 Progressive Verification of Other Domains

The progressive verification flow (Figure 6.2) is not specific to the domain of MCM

verification. This flow can also be used for other types of properties. Progressive

verification is most useful for properties which can be broken by bad designs as well

as by bad implementations. Hardware security properties fit this description, and

224

so a progressive flow can be used to verify them. CheckMate [TLM18a] provides

bounded early-stage hardware security verification based on the µhb graphs developed

by PipeCheck. A methodology similar to RealityCheck could provide such verification

for detailed designs, while a tool like RTLCheck could provide post-implementation

verification of the relevant security properties. Together, the three tools would form a

progressive verification flow, similar to what PipeProof, RealityCheck, and RTLCheck

do for MCM properties.

Progressive verification is not limited to hardware verification either. For example,

a compiler could be verified using a progressive flow. In such a flow, early-stage

verification of the compiler would verify its basic code generation scheme. For instance,

TriCheck [TML+17] provides early-stage MCM verification of compiler mappings as

one of its features. Verification later in the design process could introduce more

advanced compiler functionality, such as optimizations (e.g., Dodds et al. [DBG18]).

Finally, post-implementation verification could verify the actual compiler code itself

using automated approaches (e.g., akin to CompCert [Ler09], but automated).

7.3.4 Developing Abstractions and Concurrency Models for

Emerging Hardware

In 1964, Amdahl et al. [ABB64] described the “architecture” of the IBM 360 as the

programmer-facing attributes of its hardware, like its functional behaviour. This

“architecture” subsequently evolved into the hardware/software ISA abstraction we

know today. For decades, the ISA defined the hardware/software interface and served

as a contract between hardware and software. Software targeted the ISA, and hardware

implemented and was verified against the ISA. However, as this section covers, the

ISA has now become a barrier to continued hardware improvement.

The end of Moore’s Law and Dennard scaling has led to the rise of today’s

heterogeneous parallel architectures (Section 1.1), where designs are replete with

225

accelerators. Hill and Reddi [HR19] define accelerator-level parallelism (ALP) as “the

parallelism of workload components concurrently executing on multiple accelerators”.

As an example of ALP, they show that 4K video capture on a smartphone may use

multiple accelerators in a parallel and pipelined fashion, including an image signal

processor, a GPU, and a DSP (digital signal processor). In today’s SoC designs,

especially those of smartphones, ALP is becoming the norm. As an example, the

recent Apple A12 SoC has more than 40 accelerators [WS19]. Each of these accelerators

is meant for a different purpose, and they are sometimes programmed using different

toolflows. For instance, TensorFlow [Goo20] and PyTorch [F+20] are sometimes used

to program machine learning accelerators.

The legacy ISA hardware/software abstraction is geared towards specifying the

behaviour of a general-purpose processor, not an SoC like today’s smartphone chips.

ISAs generally cannot specify the behaviour of accelerators, especially since some

accelerators may not even have instruction sets [SVRM15]. Computing is moving

towards a “post-ISA” world [Mar18], where toolflows routinely bypass the ISA to

program accelerators directly. Thus, the ISA is proving insufficient for modelling

emerging heterogeneous parallel hardware.

These developments necessitate the creation of new hardware/software abstractions

capable of describing the behaviour of emerging hardware. Without such specifications,

achieving system correctness becomes difficult. In the absence of a hardware/software

interface specification, software does not have a clearly defined interface to target, and

hardware does not have a specification to be validated against.

The hardware/software abstractions of the future should be formally specified

so that they unambiguously describe the required software-facing behaviour of the

hardware. An example in this vein is the ISA-Formal project [RCD+16] from ARM,

which mechanised the entire ARM instruction set specification so as to facilitate

verification (among other things). While a staggering achievement, ISA-Formal does

226

not support the modelling of accelerators. The RISC-V community is also attempting

to formalise their instruction set specification. They have flagged ease of extension to

plug in formal specifications of accelerators and I/O devices as a desirable trait [Nik19],

so as to better model heterogeneous parallel SoCs.

A promising line of research in the development of new hardware/software ab-

stractions is the Instruction-Level Abstraction (ILA) [SVRM15]. ILAs are ISA-like

abstractions of accelerators, and can be automatically generated from an implementa-

tion and an ILA specification template. ILAs can thus serve as targets for accelerator

software/firmware as well as specifications for hardware to be verified against. In an

SoC with several accelerators like the Apple A12, each accelerator can be described

with an ILA.

When multiple accelerators communicate with each other on an SoC, they often

do so via shared memory, as in Hill and Reddi’s 4K video capture example referenced

above [HR19]. ALP in SoCs thus necessitates the development of MCM specifications

describing the SoC’s shared memory behaviour. These MCMs must also be formally

specified to avoid ambiguity and facilitate verification (Section 2.1.4). During my

PhD, I was part of the ILA-MCM [ZTM+18] follow-on work to the initial ILA paper.

This work linked ILA models of instruction operational semantics with axiomatic

MCM constraints reflecting the nature of shared memory in order to facilitate SoC

verification. Future work can build on ILA-MCM’s example to develop rich formal

models for emerging heterogeneous parallel hardware. These models should include

both instruction operational semantics and an MCM.

MCM specifications for emerging hardware should be driven by the nature of the

hardware involved, specifically its memory access patterns and reordering behaviour.

RealityCheck’s support for modularity and abstraction is well-suited to modelling and

abstracting the behaviour of such heterogeneous parallel hardware, and can inform the

development of such MCMs. Users of RealityCheck can specify the ordering properties

227

of each processing element (including accelerators) on an SoC individually and then

compose them together to create a detailed ordering specification of the overall SoC.

They can then judiciously use interfaces and interface verification (Section 4.4) to

soundly (up to a bound) abstract the ordering behaviour of the SoC step-by-step to

generate an ordering specification that is closer in granularity to today’s ISA-level

MCMs.

Once formal MCM specifications for emerging hardware are created, the tools

developed by this dissertation (PipeProof, RealityCheck, and RTLCheck) can be used

to verify designs and implementations against these specifications. RealityCheck in

particular is well-placed to verify heterogeneous parallel architectures thanks to its

support for modularity, hierarchy, and abstraction.

7.4 Dissertation Conclusions

Computers are becoming more and more integrated into our daily lives. Today, we

routinely use computers to hold teleconferences, navigate using GPS, work remotely,

and for a plethora of other tasks. With the coronavirus pandemic and the rise of AI

and machine learning, the importance of computing in our daily lives will continue to

increase.

To be capable of accomplishing all these tasks, computers have become more

complex over the years, and their complexity continues to increase. In the hardware

world, the end of Moore’s Law and Dennard scaling has resulted in the emergence of

heterogeneous parallelism in recent years. SoCs today routinely have at least 4 to 8

general-purpose processing cores that can operate in parallel, and they may have over

40 accelerators. Each accelerator is designed for a specific type of computation, and

may have its own programming toolchain. Processor components are developed by a

228

number of distinct teams, and at the SoC level, components may even be developed

by different vendors.

Complex systems like those of today are more bug-prone than simple ones. At the

same time, the importance of computing to our daily lives means that the ramifications

of these bugs are higher than they have ever been. This necessitates stringent

verification to ensure the correctness of today’s processors and SoCs. Hardware

verification is a general challenge, with verification costs now dominating total hardware

design cost [Fos15].

Despite this investment, hardware bugs continue to slip through industry verific-

ation practices into chips that are released to end users. While software bugs can

generally be easily patched, hardware typically cannot be modified after its release

to the end user. Fixes for hardware bugs therefore often employ heavy-handed work-

arounds that notably decrease processor capabilities. For instance, the recent Spectre

hardware security bug had to be fixed using fence instructions that reduced perform-

ance [KHF+19]. Similarly, a bug in Intel’s transactional memory implementation

on Haswell processors was fixed by disabling the transactional memory functional-

ity [Hac14]. Thus, it is critical that hardware bugs be discovered as early as possible.

Part of the problem with hardware verification today is that processor manufac-

turers still use primarily testing-based methods for validation. These methods can

easily miss bugs that occur only in very specific circumstances, especially on today’s

nondeterministic multiprocessors. Verification using formal methods, on the other

hand, is adept at discovering hard-to-find bugs and can provide strong correctness

guarantees for designs and implementations. However, the use of formal verification

often requires deep expertise in formal methods, which typical hardware engineers do

not have.

In today’s parallel architectures, processing elements often communicate and

synchronize with each other through loads and stores to shared memory. Memory

229

consistency models (MCMs) specify ordering rules for load and store operations to

shared memory, thus constraining the values that can be read by load operations. A

processor must respect the MCM of its ISA for any program that it runs, or the correct

operation of a parallel program on that processor cannot be guaranteed. Verification of

MCM implementations is thus critical to overall parallel system correctness. Further-

more, emerging heterogeneous parallel designs are likely to employ accelerator-level

parallelism [HR19] (multiple accelerators concurrently working together to process

a workload on chip). These accelerators can also communicate with each other via

shared memory, so MCM verification will continue to be important for emerging

designs.

This dissertation makes a number of novel contributions that significantly improve

the state of the art in parallel hardware verification, in particular that of MCM proper-

ties. The work in this dissertation develops MCM verification methodologies and tools

that can deliver the standard of verification required for real-world commercial hard-

ware. The automated tools are designed to be used by hardware engineers, enabling

them to obtain strong correctness guarantees about their designs and implementations

by themselves. The three tools (PipeProof, RealityCheck, and RTLCheck) can be used

together in the flow of Progressive Automated Formal Verification for thorough MCM

verification of hardware designs and implementations throughout their development.

Progressive verification can detect bugs earlier and reduce overall development time,

thus helping to address the large amount of time spent on hardware verification today.

Individually, the tools in this dissertation provide verification coverage across all

programs (PipeProof), verification that is scalable (RealityCheck), and verification

of real implementations (RTLCheck). All-program verification coverage ensures that

no bugs slip through the verification, while scalable verification ensures that the

methodology is capable of tackling the increasing complexity of hardware today.

Meanwhile, linking verification of formal models to that of real implementations helps

230

push correctness guarantees for early-stage designs through to chips that are shipped

to end users.

Overall, the contributions of this dissertation are as follows:

• Chapter 3 presents RTLCheck, a methodology and automated tool for linking

microarchitectural ordering specifications to RTL implementations. Prior work

on automated hardware MCM verification only went down to microarchitecture

and could not be linked to real implementations. RTLCheck enables such linkage,

allowing correctness guarantees proven for early-stage designs to be easily pushed

down to the eventual RTL implementations. RTLCheck doubles as a mechanism

to formally verify the soundness of a microarchitectural model with respect to

RTL, thus helping users develop accurate formal models of existing processor

implementations.

• Chapter 4 presents RealityCheck, a methodology and automated tool for scal-

able microarchitectural MCM verification of detailed designs. Prior work on

automated microarchitectural MCM verification used monolithic approaches

that do not scale due to the NP-completeness of the SMT solvers used. Real-

ityCheck exploits the structural modularity inherent in hardware designs to

enable specification and verification of a design piece-by-piece. This allows for

scalable verification by breaking up a processor’s MCM verification into smaller

verification problems. RealityCheck’s modular specifications are also an excellent

fit for the distributed nature of the hardware design process.

• Chapter 5 presents PipeProof, a methodology and automated tool for all-program

microarchitectural MCM verification of early-stage designs. Processors must

be verified as correctly respecting their MCMs across all possible programs to

ensure correctness. However, prior automated microarchitectural MCM verific-

ation approaches only provided bounded verification, which only guaranteed

231

design correctness for a subset of all programs. PipeProof develops the first

microarchitectural MCM verification approach capable of automatically verifying

MCM correctness across all programs, giving designers complete confidence that

there are no MCM bugs in their design.

• Chapter 6 presents Progressive Automated Formal Verification, a novel generic

verification flow with multiple benefits. Prior formal verification approaches fo-

cused on one point in development, like early-stage design or post-implementation

verification. In contrast, progressive verification emphasises the use of automated

formal verification at multiple points in the development timeline and the linkage

of the different verification approaches to each other. Progressive verification

enables the earlier detection of bugs and provides reductions in verification over-

head and overall development time. The combination of PipeProof (Chapter 5)

with RealityCheck (Chapter 4) and RTLCheck (Chapter 3) enable the progress-

ive verification of MCM properties in parallel processors. This concrete instance

of a progressive verification flow serves as a reference point for future work on

the progressive verification of other types of properties and systems.

• Overall, the work in this dissertation advances automated formal MCM verifica-

tion much closer to being capable of verifying the designs and implementations

of real-world processors. Individually, each of the tools in this dissertation

makes its own contribution in this regard. RTLCheck enables automated MCM

verification of real processor implementations for the first time. RealityCheck’s

twin benefits of scalability and distributed specification are both critical to

the verification of real-world designs, while PipeProof brings the coverage of

automated MCM verification approaches up to the level required for real-world

processors. In addition, when the the three tools are combined in a progressive

verification flow, they enable thorough and efficient MCM verification across

232

much of the hardware development timeline. This thorough progressive verifica-

tion is essential to ensure the MCM correctness of real-world processors that are

shipped to end users.

This dissertation addresses major outstanding challenges in hardware MCM veri-

fication, and the methodologies and tools I present here are well-positioned to handle

the hardware architectures of the future. However, MCMs are but one of the types

of properties that must be verified for the hardware designs of today and the future.

Processors must also be verified as being functionally correct with respect to the

semantics of their individual instructions (or instruction-level operations, in the case

of accelerators). Proving the functional correctness of future processors will be harder

than it has been in the past, as each type of accelerator may have its own correctness

criteria.

Given how much of our lives we live online today, the processors of the future

must also be secure. The recent Spectre [KHF+19] and Meltdown [LSG+18] attacks

have brought to light a class of serious security issues with today’s designs. Future

processors must protect against these and other hardware security issues, so that

the use of tomorrow’s hardware does not come with risks of information leakage and

identity theft. Furthermore, with the rise of AI and machine learning, questions of

ethics and bias in computing results have also become more prominent. The capability

to evaluate AI and machine learning systems for bias is critical to ensuring that the

benefits of AI and machine learning are equally available to all.

Verification using formal methods can provide the strong correctness guarantees

required by the hardware and software of tomorrow. However, the use of formal

methods has historically been restricted to the relatively small set of individuals

with formal methods knowledge. The formal verification tools of the future must be

usable by typical hardware and software engineers, so as to enable formal verification

to become mainstream. The verification tools developed in this dissertation have

233

usability as one of their core tenets, and show that improving usability need not

result in a reduction in verification capabilities. The inclusion of basic formal methods

instruction in computer science and engineering curricula would also make it easier

for the engineers of the future to utilise formal verification tools.

The progressive verification flow proposed in this dissertation advocates for stringent

yet efficient verification of computing systems throughout their development. It is

a generic verification flow, and should be applied to other types of properties and

systems in the future. Progressive verification of such properties and systems will

bring the same rigour to their verification that this dissertation brings to hardware

MCM verification. The computing community as a whole must work towards a future

where bugs are rarities rather than the norm, and where formal verification tools are

a standard part of every hardware and software engineer’s toolkit. The importance of

computing to our lives today makes it paramount that we do so.

234

Appendix A

Hardware Features and Attributes

That Impact MCM Behaviour

This appendix briefly covers some hardware features and attributes that affect a

processor’s MCM behaviour, including out-of-order execution, write atomicity and

cache coherence, dependencies, and cumulativity. The material in this appendix draws

on the existing literature, including Adve and Gharachorloo’s MCM tutorial [AG96],

the primer on consistency and coherence by Sorin et al. [SHW11], and Hennessy and

Patterson’s textbook on computer architecture [HP17]. The intent is to give the

reader a feel for how common hardware features give rise to the counterintuitive weak

behaviours and complicated specifications seen in many of today’s MCMs.

A.1 Non-FIFO Coalescing Store Buffers

Store buffers can cause the reordering of write instructions with subsequent reads

(Section 1.2). The most restrictive store buffers are FIFO, which means that they do

not reorder stores with respect to each other. However, this can result in a scenario

where stores that could go to the cache get blocked behind a store that is waiting for

its cache line to be fetched from memory (assuming a write-allocate cache). FIFO

235

Core 0 Core 1

(i1) [x] ← 1 (i3) r1 ← [y]

(i2) [y] ← 1 (i4) r2 ← [x]

SC forbids r1=1, r2=0

Figure A.1: Code for litmus test mp

Core 0 Core 1

(i1) [y] ← 1 (i4) r1 ← [y]

(i2) [x] ← 1 (i5) r2 ← [x]

(i3) [y] ← 2

SC forbids r1=2, r2=0

Figure A.2: Code for litmus test mp+w

store buffers also prevent the coalescing of two store buffer entries with the same

address into a single entry, as doing so can reorder stores with respect to each other

(or loads with subsequent stores). In order to allow non-FIFO coalescing store buffers,

either the processor’s MCM must allow Store-Store reordering, or the processor must

be capable of speculatively reordering the stores (Section 2.1.2).

For instance, if running mp (Figure A.1) on a processor whose cores have non-FIFO

store buffers, then even if the cores have in-order pipelines, the non-SC outcome of mp

will be possible. The store buffer may reorder the two stores i1 and i2 (even if they

were sent to the store buffer in order), causing them to reach memory out of order.

This reordering can then be observed by core 1, giving the outcome r1=1,r2=0.

For an example of write coalescing, consider Figure A.2’s litmus test mp+w. This

test is the same as mp except for two differences: the store and load of y have a value

of 2 rather than 1, and there is an additional store of 1 to y on core 0 (instruction i1)

preceding the other instructions on that core. Assume that core 0 sends its three store

instructions to its store buffer in order. If running on a processor with coalescing store

buffers, core 0’s store buffer may merge its entry for i3 into the existing entry for y

that was previously created for i1. However, this effectively reorders instructions i2

and i3, enabling the outcome r1=2,r2=0 which is forbidden by SC.

236

Core 0 Core 1

(i1) r1 ← [x] (i3) r2 ← [y]

(i2) [y] ← 1 (i4) [x] ← 1

SC forbids r1=1, r2=1

Figure A.3: Code for litmus test lb

A.2 Out-of-order Execution

In a single-core system, the out-of-order execution of memory operations can provide

significant performance benefits, but can result in the reordering of memory-accessing

instructions [AG96,HP17]. In addition to the reorderings already mentioned, it also

enables the reordering of load instructions with subsequent loads or subsequent stores.

This optimization does not change architectural behaviour in a single-core system,

as no other core exists to observe the reordering. For instance, in the mp litmus

test (Figure A.1), if core 1’s instructions are considered in isolation, the loads can

be performed out of order with no changes in the values they return (since in a

single-core system no other core can write to those addresses while the loads are

executing). However, in a multicore system, the reordering of i3 and i4 can result in

the non-SC outcome of r1=1,r2=0 becoming observable, even if the stores i1 and i2

are performed in order.

For an example of Load-Store reordering, consider the lb (load buffering) litmus

test (Figure A.3). This litmus test has two addresses, x and y. Each core has a read

to one of these addresses followed in program order by a write whose address is read

by the other core. The outcome r1=1,r2=1 is forbidden under SC, and requires at

least one pair of instructions (i.e., i1 and i2 or i3 and i4) to be reordered with each

other to occur. Out-of-order execution enables such reorderings and can thus result in

lb being observable on hardware.

237

lwz r1,0(r2);

xor r3,r1,r1;

lwzx r4,r3,r5;

(a) Load to load address de-
pendency on Power.

lwz r1,0(r2);

xor r3,r1,r1;

addi r3,r3,1;

stw r3,0(r4);

(b) Load to store data de-
pendency on Power.

lwz r1,0(r2)

cmpw r1,r1

beq LC00

LC00:

lwz r3,0(r4)

(c) Load to load control de-
pendency on Power.

Figure A.4: Examples of address, data, and control dependencies using Power assembly
code.

The reordering of loads with subsequent load and store operations in program

order brings up the question of whether dependent instructions will be reordered with

each other. Section A.3 discusses dependencies in detail.

A.3 Dependencies

Many MCMs today (e.g., those of Power, ARMv7, ARMv8, and RISC-V) allow loads

to be reordered with respect to subsequent loads and stores in program order. This

raises the question of whether loads can be reordered with subsequent loads or stores

which are dependent on them. Architectures like Power, ARMv7, ARMv8, and RISC-V

define three types of dependencies: address, data, and control [SSA+11]. Figure A.4

shows examples of each type of dependency [AMT14]. An address dependency occurs

when the address accessed by a load or store depends on the value returned by a

load preceding it in program order. For example, in Figure A.4a, the second load

is dependent on the first load. A data dependency exists between a load and a

subsequent store when the store’s value depends on the loaded value. This is the

case in Figure A.4b. A control dependency occurs when the control flow decision of

whether to execute a load or store depends on the value returned by a preceding load

in program order. For example, in Figure A.4c, the result of the first load dictates

238

Core 0 Core 1

(i1) [x] ← 1 (i4) [y] ← 1

(i2) r1 ← [x] (i5) r3 ← [y]

(i3) r2 ← [y] (i6) r4 ← [x]

SC forbids r1=1, r2=0, r3=1, r4=0

Figure A.5: Code for litmus test iwp2.4

Core 0 Core 1 Core 2 Core 3

(i1) [x] ← 1 (i2) [y] ← 1 (i3) r1 ← [x] (i5) r3 ← [y]

(i4) r2 ← [y] (i6) r4 ← [x]

SC forbids r1=1, r2=0, r3=1, r4=0

Figure A.6: Code for litmus test iriw

whether or not the branch is taken, and the second load is after the branch in program

order.

Power, ARMv7, ARMv8, and RISC-V all respect address and data dependencies,

as well as control dependencies from loads to stores [SSA+11,PFD+18,RIS19]. Power,

ARMv7, and ARMv8 enforce control dependencies from loads to subsequent loads

if there exists an isync (on Power; the ARM equivalent is isb) after the branch

that enforces the control dependency and before the second load (i.e., the dependee).

Dependencies enforce local ordering and can thus be used as a lightweight ordering

enforcement mechanism [SSA+11]. However, they do not enforce cumulative ordering

(Section A.6), i.e., they do not order accesses on other threads.

Intuitively, it may seem impossible not to enforce dependencies, as a dependee

seemingly cannot execute until it has all of its inputs available. However, in the

presence of value speculation (i.e., speculatively predicting the values of loads), the

dependee can in fact behave as if it were reordered with the instruction it depends

on [MSC+01].

239

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Memory Hierarchy

Core 0 Core 1

Figure A.7: A microarchitecture with two cores, each with five-stage pipelines and
a store buffer (SB). This design is a simplistic example of how common hardware
optimizations like store buffers can lead to weak MCM behaviours.

A.4 Relaxing Write Atomicity

Values written by stores to memory do not just exist in main memory. They are also

present in other locations as instructions execute, including the pipeline, store buffer,

and caches. Each core only has access to a subset of these locations. For instance,

each core can only read from its own pipeline and store buffer, and not those of other

cores. Caches may also be private to each core. Thus, when a value is written to one

of these locations, it may be visible to one core but not to others. Write atomicity

concerns the notion of whether or not a store instruction is observed by all cores at

the same time. Write atomicity adds another dimension to weak memory behaviours

beyond the relaxations of program order by pipelines discussed previously.

If a store becomes visible to all cores in the system at the same time, the system

is said to be “multi-copy-atomic” [Col92] (referred to as MCA in this dissertation).

Multi-copy-atomicity is at odds with a number of microarchitectural features. Consider

a microarchitecture with per-core store buffers (Figure A.7). When a store to an

address x is put in the store buffer and is followed in program order by a load to x,

the load must read its value from the store buffer to ensure single-thread correctness.

However, this can result in the store becoming architecturally visible to core 0 before

all other cores. Consider the iwp2.4 litmus test in Figure A.5. This is a variant of sb

240

where each core reads the address that they stored to before reading the value of the

other core’s flag. The outcome r1=1,r2=0,r3=1,r4=0 corresponds to an execution

where core 0 observes the store to x before the store to y, while core 1 observes the

store to y before the store to x. If each store was becoming visible to all cores at

the same time, this would be impossible. This behaviour, where a store becomes

visible to the writing core before it becomes visible to all other cores is known as

“reading your own write early” (referred to as rMCA in this dissertation). Note that

under rMCA, when the store becomes visible to a core other than the writing core, it

becomes visible to all other cores in the system at that same time. In Figure A.7’s

microarchitecture, this is intuitively because the store becomes visible to other cores

by leaving the store buffer and going to memory (assume a single unified memory for

now), which is observable by all cores.

A further relaxation of write atomicity, called “non-multi-copy-atomicity” (referred

to as nMCA in this dissertation) is also possible. Under this variant, a store can

become visible to cores other than the writing core at different times. Consider the

iriw (Independent Reads Independent Writes) litmus test from Figure A.6. This is

essentially iwp2.4 with each store on a separate core with no other instructions. Now

the outcome r1=1,r2=0,r3=1,r4=0 can only occur if the store i1 becomes visible

to core 2 before core 3, while the store i2 becomes visible to core 3 before core 2.

Such behaviour can occur in a system where store buffers are shared between cores. If

cores 0 and 2 share a store buffer, and cores 1 and 3 also share a store buffer, then

the forbidden outcome of iriw can arise as follows. First, core 0 places its store of x

in the store buffer it shares with core 2, and core 1 places its store of y in the store

buffer it shares with core 3. Then, cores 2 and 3 perform their loads in program order.

Thus, shared store buffers result in an nMCA system.

241

Main Memory

Cache

Core 0

Cache

Core 1

(i1) [x] ← 1;
(i2) [y] ← 1;

(i3) r1 ← [y];
(i4) r2 ← [x];

x = 0 x = 0

x = 0 y = 0

(a) Start of mp execution.

Main Memory

Cache

Core 0

Cache

Core 1

(i1) [x] ← 1;
(i2) [y] ← 1;

(i3) r1 ← [y] = 1;
(i4) r2 ← [x] = 0;

x = 1 x = 0

x = 1 y = 1

y = 1 y = 1

(b) End of mp execution.

Figure A.8: An illustration of how incoherent caches can break SC using the mp litmus
test. Even though all instructions are executed in program order and one at a time,
the forbidden outcome still becomes observable.

On nMCA architectures, fences must be cumulative in order to enforce ordering

strong enough to restore SC. Cumulative fences order accesses on cores other than the

core executing the fence. Section A.6 discusses cumulativity in further detail.

So far, this section has assumed a unified memory. However, a processor’s memory

hierarchy is commonly a collection of caches and main memory, with each core having

at least one private cache. The caches in these memory hierarchies must be kept in

sync with each other to provide the illusion of shared memory to the programmer.

Processors commonly keep caches in sync using a cache coherence protocol, which can

implement MCA, rMCA, or nMCA depending on its design. Section A.5 discusses

coherence protocols in detail.

242

A.5 Cache Coherence and its Relationship to

MCMs

Caches are used in almost every processor today to reduce memory latency and thus

improve performance. In a single-core processor, caches are architecturally invisible1

and generally do not cause the program to return different results. However, in a

multicore processor, it is common for each core to have its own cache. Updates to

one cache must somehow be propagated to the caches of other cores in order to keep

the caches in sync with each other to present a coherent view of memory. Caches

in most multiprocessors are kept in sync with each other through a cache coherence

protocol2 [SHW11]. The coherence protocol ensures that messages are exchanged

between caches to update each cache with the writes that other cores have made to

their caches.

The operations of a coherence protocol are a critical component of MCM enforce-

ment in most shared-memory multiprocessors. As an example, consider the execution

of mp (Figure A.1) depicted in Figure A.8, where each core has a private cache. At

the start of execution (Figure A.8a), each cache contains a line for address x that

has a value of 0. If core 0 writes a value of 1 to x in its cache and main memory3

by executing instruction i1, then in the absence of a coherence protocol, this write

will not be propagated to core 1 until the cache line for x in core 1’s cache is evicted.

Without a mechanism to enforce coherence, core 0 has no way to force core 1 to see

the new value of x. This is problematic because the system’s MCM may require core

1 to observe the new value of x before fetching other new values into its cache. (This

is often the case for strong MCMs like SC and TSO.) For instance, core 0 may then

1Here, I am restricting myself to considering the results of instructions rather than side channels
like the time an instruction takes to execute. Attackers can exploit the presence of caches to conduct
side-channel attacks to leak confidential information [KHF+19].

2Some systems like GPUs may have some of their caches be incoherent [MLPM15] due to the
nature of their architecture and the applications that are run on them.

3Assuming a write-through cache [HP17].

243

perform i2 and write 1 to address y in its cache and main memory. Core 1 may then

perform i3, fetching the line for y from main memory, which contains its updated

value of 1. Finally, core 1 can read its cache line for x and return a value of 0 for

i4. Thus, without the coherence protocol, the system violates SC despite each core

performing its memory operations in program order and one at a time. The orderings

enforced by coherence play an integral role in the enforcement of weaker MCMs as

well; this relationship can be illustrated through other litmus tests [SSA+11].

A coherence protocol enforces two invariants: the Single-Writer Multiple-Readers

invariant (SWMR) and the Data Value Invariant (DVI) [SHW11]. The SWMR

invariant enforces that only one core has write permissions (or multiple cores have

read permissions) to a given cache line at any time. The DVI invariant enforces that

each load returns the value of the latest store to its address. Together, these two

invariants enforce a total order on all stores to a single address, and ensure that load

operations return the value of the latest store to that address. So for instance, if one

core were to observe the value of an address z changing from 0→3→2, then all other

cores would also observe that same sequence of updates to z.

Coherence protocols can be divided into two major types: those that use update-

based coherence and those that use invalidation-based coherence [SHW11]. Update-

based coherence protocols send the updated value for an address to other cores when

it is written. Meanwhile, invalidation-based coherence protocols invalidate the line

containing the address written to by one cache in the caches of other cores. In today’s

multiprocessors, invalidation-based coherence is largely used [SHW11]. Coherence

protocols can also be divided into snooping protocols (which use a common bus

on which all cores observe memory transactions) and directory protocols (where a

centralised or distributed directory keeps track of which cores have access to which

data, and enforces coherence by sending appropriate messages) [SHW11]. A coherence

protocol may implement one of the flavours of write atomicity (Section A.4), depending

244

Core 0 Core 1 Core 2

(i1) [x] ← 1 (i2) r1 ← [x] (i5) r2 ← [y]

(i3) <fence> (i6) <fence>

(i4) [y] ← 1 (i7) r3 ← [x]

Cumulative fence i3 forbids r1=1, r2=1, r3=0

Figure A.9: Code for litmus test wrc+fences

on the requirements of the processor’s MCM. Invalidation-based coherence protocols

that implement nMCA allow a cache to send invalidations to other caches and not

wait for their acknowledgement [PFD+18].

Coherence protocols are a widely studied area of research within computer archi-

tecture, including their design [SHW11,CKS+11,ASA18], verification [ZLS10,ZBES14,

BEH+17], and even automatic generation [ONS18]. While coherence and memory

consistency are often considered conceptually separate, their implementations are often

closely coupled to improve performance [MLPM15]. For instance, coherence protocols

can take advantage of the reorderings permitted by weak MCMs to reduce their

bandwidth usage [KCZ92]. CCICheck [MLPM15] explored the relationship between

coherence and consistency in multiprocessors, defining the coherence-consistency in-

terface or CCI as the orderings that the coherence protocol provides to the rest of

the microarchitecture combined with the orderings that the rest of the microarchi-

tecture expects from the coherence protocol. The coherence protocol and the rest

of the microarchitecture must agree on the distribution of responsibilities for MCM

enforcement, or MCM violations will result.

A.6 Cumulativity

On nMCA architectures like Power and ARMv7, fences need to be cumulative to enforce

ordering strong enough to restore SC. In addition to ordering memory operations

before and after them on the same core, cumulative fences also order accesses on

other threads observed by their thread before the fence before those that their thread

245

observes after the fence. Consider Figure A.9’s litmus test wrc+fences (wrc stands

for Write-to-Read Causality). In this test, the fences enforce ordering between i2

and i4 as well as between i5 and i7. Core 1 observes (i2) core 0’s write to x (i1),

and then writes 1 to y (i4). Core 2 observes (i5) core 1’s write to y, and then

reads the value of x (i7). Intuitively, one would expect that due to causality, core 2

should observe the store to x (since it observed the store to y which happened after

the store to x). However, on an nMCA system, simply ordering i2 before i4 and

i5 before i7 is not enough to ensure that core 2 sees the store to x (i.e., to forbid

the outcome r1=1,r2=1,r3=0). This is because under nMCA, the store i1 to x can

become visible to core 1 without becoming visible to core 2 as well. To forbid the

outcome r1=1,r2=1,r3=0, the fences need to be cumulative. If the fence i3 were

cumulative, it would order i1 with respect to i4 in addition to ordering i2 with

respect to i4. Thus, if core 2 observes i4, it must now observe i1 as well, which will

result in in i7 returning 1. The cumulative ordering of i4 combined with the orderings

enforced by i6 (i6 need not be cumulative for this particular test) is enough to forbid

the outcome r1=1,r2=1,r3=0 on an nMCA architecture. A lack of cumulative fences

was one of the major issues with the draft specification of the RISC-V MCM (see

TriCheck [TML+17] for details). There are multiple flavours of cumulativity; these

are explained in prior work such as Sarkar et al. [SSA+11].

A.7 Virtual Memory

Modern processors implement virtual memory to isolate processes running at the same

time from each other, as well as to abstract the size of physical memory away from

the programmer. The virtual to physical address mappings in a system can have

ramifications for MCM correctness. Consider the litmus test in Figure A.10, taken

from COATCheck [LSMB16]. If x and y map to different physical addresses, then

246

Core 0 Core 1

(i1) [x] ← 1 (i3) [y] ← 2

(i2) r1 ← [y] (i4) r2 ← [x]

Outcome: r1=2, r2=1

Figure A.10: Code for litmus test illustrating how virtual to physical address mappings
can affect MCM behaviour, taken from COATCheck [LSMB16]. If x and y map to
different physical addresses, then the specified outcome is allowed under SC. However,
if x and y map to the same physical address, then the specified outcome is forbidden
under SC.

the outcome r1=2,r2=1 is allowed under SC. If x and y map to the same physical

address, though, then the test essentially reduces to a single-address litmus test. In

that case, the outcome r1=2,r2=1 is forbidden under SC.

The vast majority of MCM work ignores virtual memory considerations, but a

number of papers have examined the issue. Romanescu et al. [RLS10] were the

first to differentiate between MCMs for virtual addresses and those for physical

addresses. They also developed approaches for the efficient dynamic verification

(Section 2.3.5) of virtual address memory consistency. COATCheck [LSMB16] built

on PipeCheck [LPM14] (Section 2.4) to enable both the address translation-aware

formal specification of microarchitectural orderings and the formal verification of such

ordering specifications for novel virtual memory-aware “enhanced” litmus tests. It also

coined the term “transistency model” to denote the superset of MCMs that captures

all translation-aware sets of ordering rules. TransForm [HTM20] creates a vocabulary

for formally specifying transistency models and develops a candidate transistency

model for x86. TransForm can also automatically synthesize enhanced litmus tests.

A.8 Summary

Microarchitectural features such as those in this section all affect the execution of

memory operations in ways which break SC. Outlawing all of these features would

result in an unacceptable performance hit, so architects strongly prefer to keep these

247

features in their hardware designs. There are two ways to do so. One is to implement

the reordering speculatively (Section 2.1.2) i.e., roll back the execution of the reordered

memory instructions when the reordering would become programmer-visible, and

then re-execute them. The other is to have the processor MCM be a weak MCM

(Section 2.1.3) that allows the reorderings to be programmer-visible. Depending on

the types of reorderings employed by the designers, the specification of the processor’s

weak MCM (Section 2.3.1) may need to include certain classes of attributes. For

instance, the use of nMCA write atomicity in a processor requires defining a notion of

cumulativity for the fences in its ISA-level MCM.

Most processors today (including all commercial ones) have chosen to implement

weak MCMs [Int13, AMD13, SPA94, ARM13, IBM13, RIS19] rather than adopt a

purely speculative approach. However, the two approaches are not mutually exclusive.

Architects may choose to use an MCM for their ISA that allows some reorderings and

forbids others, and then speculatively implement some of the forbidden reorderings. For

instance, Intel and AMD architectures have a consistency model of TSO (which forbids

Load-Load reordering), but speculatively reorder pairs of load instructions [Int13,

AMD13].

248

Bibliography

[AAA+15] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt
Jonsson, Carl Leonardsson, and Konstantinos Sagonas. Stateless model
checking for TSO and PSO. In Christel Baier and Cesare Tinelli, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages
353–367, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[AAJ+19] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus
L̊ang, Tuan Phong Ngo, and Konstantinos Sagonas. Optimal stateless
model checking for reads-from equivalence under sequential consistency.
Proc. ACM Program. Lang., 3(Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA)), October 2019.

[AAJL16] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl
Leonardsson. Stateless model checking for POWER. In Swarat Chaudhuri
and Azadeh Farzan, editors, Computer Aided Verification, pages 134–156,
Cham, 2016. Springer International Publishing.

[ABB64] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks. Architecture of the
IBM System/360. IBM J. Res. Dev., 8(2):87–101, April 1964.

[ABD+15] Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrish-
nan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson.
GPU concurrency: Weak behaviours and programming assumptions. In
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’15, pages 577–591. ACM, 2015.

[ACDJ01] Mark Aagaard, Byron Cook, Nancy A. Day, and Robert B. Jones. A
framework for microprocessor correctness statements. In Correct Hard-
ware Design and Verification Methods, 11th IFIP WG 10.5 Advanced
Research Working Conference, CHARME 2001, Livingston, Scotland,
UK, September 4-7, 2001, Proceedings, pages 433–448, 2001.

[AG96] Sarita Adve and Kourosh Gharachorloo. Shared memory consistency
models: A tutorial. IEEE Computer, 29(12):66–76, 1996.

[AH90] Sarita Adve and Mark Hill. Weak ordering: a new definition. 17th
International Symposium on Computer Architecture (ISCA), 1990.

249

[AJM+00] Mark Aagaard, Robert B. Jones, Thomas F. Melham, John W. O’Leary,
and Carl-Johan H. Seger. A methodology for large-scale hardware verific-
ation. In Formal Methods in Computer-Aided Design, Third International
Conference, FMCAD 2000, Austin, Texas, USA, November 1-3, 2000,
Proceedings, pages 263–282, 2000.

[AKNT13] Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig.
Software verification for weak memory via program transformation. In
Matthias Felleisen and Philippa Gardner, editors, Programming Lan-
guages and Systems, pages 512–532, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[AKT13] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders
for efficient bounded model checking of concurrent software. In Natasha
Sharygina and Helmut Veith, editors, Computer Aided Verification, pages
141–157, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Alg17] Ben Algaze. Software is increasingly complex. That can be danger-
ous., 2017. https://www.extremetech.com/computing/259977-software-
increasingly-complex-thats-dangerous.

[Alp85] F. B Alpern, B; Schneider. Defining liveness. Information processing
letters, 1985.

[AMD12] AMD. Revision guide for amd family 10h processors, 2012. https:

//www.amd.com/system/files/TechDocs/41322 10h Rev Gd.pdf.

[AMD13] AMD. AMD64 architecture programmer’s manual. 2013.

[AMM+18] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and
Alan Stern. Frightening small children and disconcerting grown-ups:
Concurrency in the Linux kernel. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’18, page 405–418. Association
for Computing Machinery, 2018.

[AMSS10] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences in
weak memory models. CAV, 2010.

[AMSS11] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Litmus:
Running tests against hardware. In Parosh Aziz Abdulla and K. Rus-
tan M. Leino, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 41–44, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats:
Modelling, simulation, testing, and data-mining for weak memory. ACM
Transactions on Programming Languages and Systems (TOPLAS), 36,
July 2014.

250

https://www.amd.com/system/files/TechDocs/41322_10h_Rev_Gd.pdf
https://www.amd.com/system/files/TechDocs/41322_10h_Rev_Gd.pdf

[ARM11] ARM. Cortex-A9 MPCore, programmer advice notice, read-after-read
hazards. ARM Reference 761319., 2011. http://infocenter.arm.com/
help/topic/com.arm.doc.uan0004a/UAN0004A a9 read read.pdf.

[ARM13] ARM. ARM Architecture Reference Manual, 2013.

[ASA18] Johnathan Alsop, Matthew D. Sinclair, and Sarita V. Adve. Spandex:
A flexible interface for efficient heterogeneous coherence. In Proceedings
of the 45th Annual International Symposium on Computer Architecture,
ISCA ’18, page 261–274. IEEE Press, 2018.

[BA08] Hans-J. Boehm and Sarita Adve. Foundations of the C++ concurrency
memory model. Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2008.

[BBDL98] Ilan Beer, Shoham Ben-David, and Avner Landver. On-the-fly model
checking of RCTL formulas. In Alan J. Hu and Moshe Y. Vardi, editors,
Computer Aided Verification, pages 184–194, Berlin, Heidelberg, 1998.
Springer Berlin Heidelberg.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In W. Rance Cleaveland, editor,
Tools and Algorithms for the Construction and Analysis of Systems, pages
193–207, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 10ˆ20 states and beyond. Inf. Comput.,
98(2):142–170, June 1992.

[BD94] Jerry R. Burch and David L. Dill. Automatic verification of pipelined
microprocessor control. In David L. Dill, editor, Computer Aided Verific-
ation, pages 68–80, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[BDW16] Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling SC
atomics in C11 and OpenCL. In 43rd Annual Symposium on Principles
of Programming Languages (POPL), 2016.

[BEH+17] Christopher J. Banks, Marco Elver, Ruth Hoffmann, Susmit Sarkar, Paul
Jackson, and Vijay Nagarajan. Verification of a lazy cache coherence
protocol against a weak memory model. In Proceedings of the 17th
Conference on Formal Methods in Computer-Aided Design, FMCAD ’17,
page 60–67, Austin, Texas, 2017. FMCAD Inc.

[BGMW17] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A general
approach to network configuration verification. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 155–168. Association for Computing Machinery,
2017.

251

http://infocenter.arm.com/help/topic/com.arm.doc.uan0004a/UAN0004A_a9_read_read.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.uan0004a/UAN0004A_a9_read_read.pdf

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[BK18] Armin Biere and Daniel Kröning. SAT-based model checking. In Ed-
mund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors, Handbook of Model Checking, pages 277–303. Springer
International Publishing, Cham, 2018.

[BMO+12] Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter
Sewell. Clarifying and compiling C/C++ Concurrency: from C++11 to
POWER. 39th ACM SIGPLAN Symposium on Principles of Program-
ming Languages (POPL), 2012.

[BMW09] Colin Blundell, Milo Martin, and Thomas Wenisch. InvisiFence:
Performance-transparent memory ordering in conventional multipro-
cessors. 36th International Symposium on Computer Architecture (ISCA),
2009.

[BOS+11a] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, , and Tjark Weber.
Mathematizing C++ concurrency. 38th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL), 2011.

[Bos11b] Pradip Bose. Power wall. In David Padua, editor, Encyclopedia of
Parallel Computing, pages 1593–1608. Springer US, Boston, MA, 2011.

[BSST09] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli.
Satisfiability modulo theories. In Armin Biere, Marijn J. H. Heule, Hans
van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications, chapter 26,
pages 825–885. IOS Press, February 2009.

[BT17] James Bornholt and Emina Torlak. Synthesizing memory models from
framework sketches and litmus tests. In 38th Conference on Programming
Language Design and Implementation (PLDI), 2017.

[BT18] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In
Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors, Handbook of Model Checking, pages 305–343. Springer
International Publishing, Cham, 2018.

[Büc90] J. Richard Büchi. On a decision method in restricted second order
arithmetic. In Saunders Mac Lane and Dirk Siefkes, editors, The Collected
Works of J. Richard Büchi, pages 425–435. Springer New York, 1990.

[BVR+12] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović. Chisel: Constructing hardware in a
Scala embedded language. In DAC Design Automation Conference 2012,
pages 1212–1221, 2012.

252

[Cad15a] Cadence Design Systems, Inc. JasperGold Apps Command Reference
Manual, 2015.

[Cad15b] Cadence Design Systems, Inc. JasperGold Apps User’s Guide, 2015.

[Cad16] Cadence Design Systems, Inc. JasperGold Engine Selection Guide, 2016.

[CDH+15] Eduard Cerny, Surrendra Dudani, John Havlicek, Dmitry Korchemny,
et al. SVA: The Power of Assertions in SystemVerilog. Springer, 2015.

[CDS+14] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji
Chen, and Olivier Temam. DianNao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning. In Proceedings of the 19th
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’14, page 269–284. Association
for Computing Machinery, 2014.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching-time temporal logic. In Logic
of Programs, Workshop, page 52–71, Berlin, Heidelberg, 1981. Springer-
Verlag.

[CFH+03] Edmund Clarke, Ansgar Fehnker, Zhi Han, Bruce Krogh, Olaf Sturs-
berg, and Michael Theobald. Verification of hybrid systems based on
counterexample-guided abstraction refinement. In Hubert Garavel and
John Hatcliff, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 192–207, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

[CGJ+00] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In 12th Interna-
tional Conference on Computer Aided Verification (CAV), 2000.

[Chl13] Adam Chlipala. Certified Programming with Dependent Types: A Prag-
matic Introduction to the Coq Proof Assistant. The MIT Press, 2013.

[CHV18] Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. Introduc-
tion to model checking. In Edmund M. Clarke, Thomas A. Henzinger,
Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking,
pages 1–26. Springer International Publishing, Cham, 2018.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Kurt Jensen and Andreas Podelski, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pages
168–176, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[CKS+11] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima
Honarmand, Sarita V. Adve, Vikram S. Adve, Nicholas P. Carter, and

253

Ching-Tsun Chou. DeNovo: Rethinking the memory hierarchy for
disciplined parallelism. PACT, 2011.

[CMP08] K. Chen, S. Malik, and P. Patra. Runtime validation of memory order-
ing using constraint graph checking. In 2008 IEEE 14th International
Symposium on High Performance Computer Architecture, pages 415–426,
2008.

[Col92] William W. Collier. Reasoning About Parallel Architectures. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[com16] comododragon. Stores are not working, 2016. https://github.com/ucb-
bar/vscale/issues/13.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, STOC ’71, page 151–158. Association for Computing Machinery,
1971.

[Coq04] The Coq development team. The Coq proof assistant reference manual,
version 8.0. LogiCal Project, 2004. http://coq.inria.fr.

[CSG02] Prosenjit Chatterjee, Hemanthkumar Sivaraj, and Ganesh Gopalakrish-
nan. Shared memory consistency protocol verification against weak
memory models: Refinement via model-checking. In 14th International
Conference on Computer Aided Verification (CAV), 2002.

[CSW18] Nathan Chong, Tyler Sorensen, and John Wickerson. The semantics of
transactions and weak memory in x86, power, arm, and c++. In Proceed-
ings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, page 211–225. Association for
Computing Machinery, 2018.

[CTMT07] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC:
Bulk enforcement of sequential consistency. 34th International Sym-
posium on Computer Architecture (ISCA), 2007.

[CV17] Soham Chakraborty and Viktor Vafeiadis. Formalizing the concurrency
semantics of an LLVM fragment. In Proceedings of the 2017 Interna-
tional Symposium on Code Generation and Optimization, CGO ’17, page
100–110. IEEE Press, 2017.

[CVS+17] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam
Chlipala, and Arvind. Kami: A platform for high-level parametric
hardware specification and its modular verification. Proc. ACM Program.
Lang., 1(ICFP), 2017.

254

[DBG18] Mike Dodds, Mark Batty, and Alexey Gotsman. Compositional verific-
ation of compiler optimisations on relaxed memory. In Amal Ahmed,
editor, Programming Languages and Systems, pages 1027–1055, Cham,
2018. Springer International Publishing.

[DGY+74] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and
A. R. LeBlanc. Design of ion-implanted MOSFET’s with very small
physical dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268,
1974.

[Dij02] Edsger W. Dijkstra. Cooperating sequential processes. In The Origin of
Concurrent Programming: From Semaphores to Remote Procedure Calls,
page 65–138. Springer-Verlag, Berlin, Heidelberg, 2002.

[diy12] The diy development team. A don’t (diy) tutorial, version 5.01, 2012.
http://diy.inria.fr/doc/index.html.

[DLCO09] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP:
Deterministic shared memory multiprocessing. In Proceedings of the 14th
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XIV, page 85–96. Association
for Computing Machinery, 2009.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[DSB86] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access
buffering in multiprocessors. 13th International Symposium on Computer
Architecture (ISCA), 1986.

[EF18] Cindy Eisner and Dana Fisman. Functional specification of hardware via
temporal logic. In Edmund M. Clarke, Thomas A. Henzinger, Helmut
Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages
795–829. Springer International Publishing, Cham, 2018.

[EL87] E. Allen Emerson and Chin-Laung Lei. Modalities for model checking:
branching time logic strikes back. Science of Computer Programming,
8(3):275 – 306, 1987.

[Elv15] Marco Elver. TSO-CC Specification, 2015.
http://homepages.inf.ed.ac.uk/s0787712/res/research/tsocc/tso-
cc spec.pdf.

[F+20] Facebook AI Research et al. Pytorch, 2020. https://pytorch.org/.

255

https://pytorch.org/

[FGP+16] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali
Sezgin, Luc Maranget, Will Deacon, and Peter Sewell. Modelling the
ARMv8 architecture, operationally: Concurrency and ISA. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, pages 608–621, 2016.

[Fos15] Harry D. Foster. Trends in functional verification: A 2014 industry study.
52nd Design Automation Conference (DAC), 2015.

[FSP+17] Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis,
Luc Maranget, Kathryn E. Gray, Ali Sezgin, Mark Batty, and Peter
Sewell. Mixed-size concurrency: ARM, POWER, C/C++11, and SC.
In Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Paris), pages 429–442, January
2017.

[GFV99] Chris Gniady, Babak Falsafi, and T. N. Vijaykumar. Is SC + ILP = RC?
26th International Symposium on Computer Architecture (ISCA), 1999.

[GGH91] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two tech-
niques to enhance the performance of memory consistency models. In In
Proceedings of the 1991 International Conference on Parallel Processing,
pages 355–364, 1991.

[GJS+14] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley.
The Java Language Specification, Java SE 8 Edition. Addison-Wesley
Professional, 1st edition, 2014.

[GKM+15] Kathryn E. Gray, Gabriel Kerneis, Dominic P. Mulligan, Christopher
Pulte, Susmit Sarkar, and Peter Sewell. An integrated concurrency
and core-ISA architectural envelope definition, and test oracle, for IBM
POWER multiprocessors. In Proceedings of the 48th International Sym-
posium on Microarchitecture, MICRO 2015, Waikiki, HI, USA, December
5-9, 2015, pages 635–646, 2015.

[Gle98] Andrew Glew. MLP yes! ILP no! ASPLOS Wild and Crazy Ideas, 1998.

[GLL+90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. 17th International
Symposium on Computer Architecture (ISCA), 1990.

[GNBD16] R. Guanciale, H. Nemati, C. Baumann, and M. Dam. Cache storage
channels: Alias-driven attacks and verified countermeasures. In 2016
IEEE Symposium on Security and Privacy (SP), pages 38–55, May 2016.

256

[God97] Patrice Godefroid. VeriSoft: A tool for the automatic analysis of con-
current reactive software. In Orna Grumberg, editor, Computer Aided
Verification, pages 476–479, Berlin, Heidelberg, 1997. Springer Berlin
Heidelberg.

[Goo89] J. R. Goodman. Cache consistency and sequential consistency. Technical
report, SCI Committee, March 1989. Tech Report 61.

[Goo20] Google. Tensorflow, 2020. https://www.tensorflow.org/.

[GSV+10] N. Goulding, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio, J. Babb,
M. B. Taylor, and S. Swanson. GreenDroid: A mobile application
processor for a future of dark silicon. In 2010 IEEE Hot Chips 22
Symposium (HCS), pages 1–39, 2010.

[Gup17] Aarti Gupta. Lecture slides on Satisfiability Modulo Theories DPLL(T),
2017.

[Hac14] Mark Hachman. Intel finds specialized TSX enterprise bug on Haswell,
Broadwell CPUs, 2014. http://www.pcworld.com/article/2464880/intel-
finds-specialized-tsx-enterprise-bug-on-haswell-broadwell-cpus.html.

[Hil98] Mark D. Hill. Multiprocessors should support simple memory-consistency
models. Computer, 31(8):28–34, August 1998.

[HLR10] Tim Harris, James Larus, and Ravi Rajwar. Transactional memory, 2nd
edition. Synthesis Lectures on Computer Architecture, 5(1):1–263, 2010.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architec-
tural support for lock-free data structures. In Proceedings of the 20th
Annual International Symposium on Computer Architecture, ISCA ’93,
page 289–300. Association for Computing Machinery, 1993.

[HP89] D. Harel and A. Pnueli. On the development of reactive systems. In
Logics and Models of Concurrent Systems, page 477–498. Springer-Verlag,
Berlin, Heidelberg, 1989.

[HP17] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth
Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 6th edition, 2017.

[HR19] Mark D. Hill and Vijay Janapa Reddi. Accelerator-level parallelism.
CoRR, abs/1907.02064, 2019.

[HTM20] Naorin Hossain, Caroline Trippel, and Margaret Martonosi. TransForm:
Formally specifying transistency models and synthesizing enhanced litmus
tests. In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pages 874–887, 2020.

257

https://www.tensorflow.org/

[HVML04] Sudheendra Hangal, Durgam Vahia, Chaiyasit Manovit, and Juin-
Yeu Joseph Lu. TSOtool: A program for verifying memory systems using
the memory consistency model. In 31st Annual International Symposium
on Computer Architecture (ISCA), 2004.

[HWS+16] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi. Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 1–13, 2016.

[IBM13] IBM. Power ISA Version 2.07, 2013.

[IEE10] IEEE. IEEE standard for Property Specification Language (PSL). IEEE
Std 1850-2010 (Revision of IEEE Std1850-2005), April 2010.

[IEE13] IEEE Standard for SystemVerilog–Unified Hardware Design, Specifica-
tion, and Verification Language, 2013.

[Int13] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, 2013.
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-software-developer-manual-325462.pdf.

[Int20] Intel. 6th generation Intel processor family specification update, Novem-
ber 2020.

[Isa20] The Isabelle development team. The Isabelle/Isar Reference Manual,
2020. https://isabelle.in.tum.de/dist/Isabelle2020/doc/isar-ref.pdf.

[ISO11a] ISO/IEC. Programming Languages – C. International standard
9899:2011, ISO/IEC, 2011.

[ISO11b] ISO/IEC. Programming Languages – C++. International standard
14882:2011, ISO/IEC, 2011.

[Jac12] Daniel Jackson. Alloy analyzer website, 2012. http://alloy.mit.edu.

[KCZ92] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy release consist-
ency for software distributed shared memory. In 19th Annual Interna-
tional Symposium on Computer Architecture, 1992.

[KHF+19] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre
attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1–19, 2019.

[KLSV17] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor
Vafeiadis. Effective stateless model checking for C/C++ concurrency.
Proc. ACM Program. Lang., 2(POPL), December 2017.

258

[KRV19] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. Model
checking for weakly consistent libraries. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, page 96–110. Association for Computing
Machinery, 2019.

[KV99] Orna Kupferman and Moshe Y. Vardi. Model checking of safety proper-
ties. In Nicolas Halbwachs and Doron Peled, editors, Computer Aided
Verification, pages 172–183, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

[KV20] Michalis Kokologiannakis and Viktor Vafeiadis. HMC: Model checking
for hardware memory models. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’20, page 1157–1171. Association for
Computing Machinery, 2020.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computing,
28(9):690–691, 1979.

[Lea20] The Lean development team. The Lean reference manual, 2020. ht-
tps://leanprover.github.io/reference/index.html.

[Lee19] Timothy B. Lee. Autopilot was active when a Tesla crashed into a
truck, killing driver, 2019. https://arstechnica.com/cars/2019/05/feds-
autopilot-was-active-during-deadly-march-tesla-crash/.

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, July 2009.

[LOM15] Yunsup Lee, Albert Ou, and Albert Magyar. Z-scale: Tiny 32-bit RISC-
V systems, 2015. https://riscv.org/wp-content/uploads/2015/06/riscv-
zscale-workshop-june2015.pdf.

[LPM14] Daniel Lustig, Michael Pellauer, and Margaret Martonosi. PipeCheck:
Specifying and verifying microarchitectural enforcement of memory con-
sistency models. 47th International Symposium on Microarchitecture
(MICRO), 2014.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In 27th USENIX Security Symposium (USENIX
Security 18), pages 973–990, Baltimore, MD, August 2018. USENIX
Association.

259

[LSG19] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. A formal
analysis of the NVIDIA PTX memory consistency model. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’19, page
257–270. Association for Computing Machinery, 2019.

[LSMB16] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhat-
tacharjee. COATCheck: Verifying Memory Ordering at the Hardware-OS
Interface. In 21st International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2016.

[Lus15] Daniel Lustig. Specifying, Verifying, and Translating Between Memory
Consistency Models. PhD thesis, Princeton University, Princeton, NJ,
USA, 2015.

[LVK+17] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. Repairing sequential consistency in C/C++11. In 38th ACM
SIGPLAN Conference on Programming Language Design and Implement-
ation (PLDI), 2017.

[LWPG17] Daniel Lustig, Andrew Wright, Alexandros Papakonstantinou, and
Olivier Giroux. Automated synthesis of comprehensive memory model
litmus test suites. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, pages 661–675. ACM, 2017.

[Mag16] Albert Magyar. Verilog version of z-scale, 2016. https://github.com/ucb-
bar/vscale.

[Man07] Jeremy Manson. Java concurrency: Roach motels and the Java
memory model, 2007. http://jeremymanson.blogspot.com/2007/05/
roach-motels-and-java-memory-model.html.

[Mar18] Margaret Martonosi. New metrics and models for a post-ISA era: Man-
aging complexity and scaling performance in heterogeneous parallelism
and Internet-of-Things. SIGMETRICS Perform. Eval. Rev., 46(1):20–20,
June 2018.

[MGJ+19] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris
Kasikci, and Karem A. Sakallah. I4: Incremental inference of inductive
invariants for verification of distributed protocols. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, SOSP ’19, page
370–384. Association for Computing Machinery, 2019.

[MHAM10] Sela Mador-Haim, Rajeev Alur, and Milo M K. Martin. Generating litmus
tests for contrasting memory consistency models. In 22nd International
Conference on Computer Aided Verification (CAV), 2010.

260

http://jeremymanson.blogspot.com/2007/05/roach-motels-and-java-memory-model.html
http://jeremymanson.blogspot.com/2007/05/roach-motels-and-java-memory-model.html

[MHAM11] Sela Mador-Haim, Rajeev Alur, and Milo M. K. Martin. Litmus tests
for comparing memory consistency models: How long do they need to
be? In Proceedings of the 48th Design Automation Conference, DAC ’11,
page 504–509. Association for Computing Machinery, 2011.

[MHMS+12] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian,
Jade Alglave, Scott Owens, Rajeev Alur, Milo M. K. Martin, Peter
Sewell, and Derek Williams. An axiomatic memory model for POWER
multiprocessors. In 24th International Conference on Computer Aided
Verification (CAV), 2012.

[MLM20] Yatin A. Manerkar, Daniel Lustig, and Margaret Martonosi. Real-
ityCheck: Bringing modularity, hierarchy, and abstraction to auto-
mated microarchitectural memory consistency verification. CoRR,
abs/2003.04892, 2020.

[MLMG18] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Aarti Gupta.
PipeProof: Automated memory consistency proofs for microarchitectural
specifications. In Proceedings of the 51st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO-51, pages 788–801.
IEEE Press, 2018.

[MLMP17] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael
Pellauer. RTLCheck: Verifying the memory consistency of RTL designs.
In 50th International Symposium on Microarchitecture (MICRO), 2017.

[MLPM15] Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Mar-
tonosi. CCICheck: Using µhb graphs to verify the coherence-consistency
interface. In 48th International Symposium on Microarchitecture (MI-
CRO), 2015.

[Moo06a] G. E. Moore. Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, April 19, 1965, pp.114
ff. IEEE Solid-State Circuits Society Newsletter, 11(3):33–35, 2006.

[Moo06b] G. E. Moore. Progress in digital integrated electronics [technical literat-
ure, copyright 1975 IEEE. reprinted, with permission. technical digest.
international electron devices meeting, IEEE, 1975, pp. 11-13.]. IEEE
Solid-State Circuits Society Newsletter, 11(3):36–37, 2006.

[MS09] A. Meixner and D.J. Sorin. Dynamic verification of memory consistency in
cache-coherent multithreaded computer architectures. IEEE Transactions
on Dependable and Secure Computing (TDSC), 2009.

[MSC+01] Milo M. K. Martin, Daniel J. Sorin, Harold W. Cain, Mark D. Hill,
and Mikko H. Lipasti. Correctly implementing value prediction in mi-
croprocessors that support multithreading or multiprocessing. In 34th
International Symposium on Microarchitecture (MICRO), 2001.

261

[MTL+16] Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. Counterexamples and proof loophole for the
C/C++ to POWER and ARMv7 trailing-sync compiler mappings. CoRR,
abs/1611.01507, 2016.

[ND13] Brian Norris and Brian Demsky. CDSChecker: Checking concurrent
data structures written with C/C++ atomics. In Proceedings of the 2013
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, October 2013.

[Nik19] Rishiyur S. Nikhil. RISC-V ISA formal specification, 2019.
https://github.com/riscv/ISA Formal Spec Public Review/

blob/master/Forvis.md.

[NRZ+15] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. How Amazon Web Services uses formal
methods. Commun. ACM, 58(4):66–73, March 2015.

[NSHW20] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood.
A Primer on Memory Consistency and Cache Coherence, Second Edi-
tion. Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2020.

[OCY+15] Marc S. Orr, Shuai Che, Ayse Yilmazer, Bradford M. Beckmann, Mark D.
Hill, and David A. Wood. Synchronization using remote-scope promotion.
In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’15, page 73–86. Association for Computing Machinery, 2015.

[OD17] Peizhao Ou and Brian Demsky. Checking concurrent data structures
under the C/C++11 memory model. In Proceedings of the 22nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’17, page 45–59. Association for Computing Machinery,
2017.

[ONS18] Nicolai Oswald, Vijay Nagarajan, and Daniel J. Sorin. Protogen: Auto-
matically generating directory cache coherence protocols from atomic
specifications. In Proceedings of the 45th Annual International Sym-
posium on Computer Architecture, ISCA ’18, page 247–260. IEEE Press,
2018.

[OSS09] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory
model: x86-TSO. In 22nd International Conference on Theorem Proving
in Higher Order Logics (TPHOLs), 2009.

[PFD+18] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar,
and Peter Sewell. Simplifying ARM concurrency: Multicopy-atomic

262

https://github.com/riscv/ISA_Formal_Spec_Public_Review/blob/master/Forvis.md
https://github.com/riscv/ISA_Formal_Spec_Public_Review/blob/master/Forvis.md

axiomatic and operational models for ARMv8. In 45th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL), 2018.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT Press,
1st edition, 2002.

[PLBN05] Michael Pellauer, Mieszko Lis, Don Baltus, and Rishiyur S. Nikhil.
Synthesis of synchronous assertions with guarded atomic actions. In 3rd
ACM & IEEE International Conference on Formal Methods and Models
for Co-Design (MEMOCODE 2005), 11-14 July 2005, Verona, Italy,
Proceedings, pages 15–24, 2005.

[PLSS17] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos
made EPR: Decidable reasoning about distributed protocols. Proc. ACM
Program. Lang., 1(OOPSLA), October 2017.

[PMP+16] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. Ivy: Safety verification by interactive generalization.
In Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’16, page 614–630.
Association for Computing Machinery, 2016.

[PNAD95] Fong Pong, Andreas Nowatzyk, Gunes Aybay, and Michel Dubois. Veri-
fying distributed directory-based cache coherence protocols: S3.mp, a
case study. In Seif Haridi, Khayri Ali, and Peter Magnusson, editors,
EURO-PAR ’95 Parallel Processing, pages 287–300, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science, SFCS ’77,
page 46–57, USA, 1977. IEEE Computer Society.

[PP18] Nir Piterman and Amir Pnueli. Temporal logic and fair discrete systems.
In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors, Handbook of Model Checking, pages 27–73. Springer
International Publishing, Cham, 2018.

[RCD+16] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David
Hoyes, Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel,
and Ali Zaidi. End-to-end verification of processors with ISA-Formal.
In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided
Verification: 28th International Conference, CAV 2016, Toronto, ON,
Canada, July 17-23, 2016, Proceedings, Part II, pages 42–58, Cham,
2016. Springer International Publishing.

[RIS15] RISC-V Foundation. RISC-V in Verilog, 2015.
https://riscv.org/2015/09/risc-v-in-verilog/.

263

[RIS19] RISC-V Foundation. The RISC-V Instruction Set Manual, Volume I:
Unprivileged ISA, Document Version 20190608-Base-Ratified, June 2019.

[RLS10] Bogdan F. Romanescu, Alvin R. Lebeck, and Daniel J. Sorin. Specifying
and dynamically verifying address translation-aware memory consistency.
In Proceedings of the Fifteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2010.

[RPA97] Parthasarathy Ranganathan, Vijay S. Pai, and Sarita V. Adve. Using
speculative retirement and larger instruction windows to narrow the
performance gap between memory consistency models. SPAA, 1997.

[Rup20] Karl Rupp. 48 years of microprocessor trend data,
2020. https://github.com/karlrupp/microprocessor-trend-
data/blob/master/48yrs/48-years-processor-trend.pdf.

[SD16] Tyler Sorensen and Alastair F. Donaldson. Exposing errors related to
weak memory in GPU applications. In 37th Conference on Programming
Language Design and Implementation (PLDI). ACM, 2016.

[SGNR14] Daryl Stewart, David Gilday, Daniel Nevill, and Thomas Roberts. Pro-
cessor memory system verification using DOGReL: a language for spe-
cifying end-to-end properties. DIFTS, 2014.

[Shi08] Anand Lal Shimpi. AMD’s B3 stepping Phenom previewed, TLB hard-
ware fix tested, 2008. https://www.anandtech.com/show/2477.

[SHW11] Daniel Sorin, Mark Hill, and David Wood. A Primer on Memory
Consistency and Cache Coherence. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2011.

[Sip06] Michael Sipser. Introduction to the Theory of Computation. International
Thomson Publishing, 2nd edition, 2006.

[SPA92] SPARC International. The SPARC Architecture Manual: Version 8.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[SPA94] SPARC. SPARC Architecture Manual, version 9, 1994.

[SS88] Dennis Shasha and Marc Snir. Efficient and correct execution of parallel
programs that share memory. ACM Transactions on Programming
Languages and Systems (TOPLAS), 1988.

[SSA+11] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek
Williams. Understanding POWER microprocessors. Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2011.

264

[Str19] Tom Strickx. How Verizon and a BGP optimizer knocked large parts of
the Internet offline today, 2019. https://blog.cloudflare.com/how-verizon-
and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-today/.

[SVRM15] Pramod Subramanyan, Yakir Vizel, Sayak Ray, and Sharad Malik.
Template-based synthesis of instruction-level abstractions for SoC veri-
fication. In Proceedings of the 15th Conference on Formal Methods in
Computer-Aided Design, FMCAD ’15, pages 160–167, Austin, TX, 2015.
FMCAD Inc.

[TLM18a] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. CheckMate:
Automated synthesis of hardware exploits and security litmus tests. In
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 947–960, 2018.

[TLM18b] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Melt-
downPrime and SpectrePrime: Automatically-synthesized attacks ex-
ploiting invalidation-based coherence protocols. CoRR, abs/1802.03802,
2018.

[TML+17] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. TriCheck: Memory model verification at
the trisection of software, hardware, and ISA. In 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

[TML+18] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. Full-stack memory model verification with
TriCheck. IEEE Micro, 38(03):58–68, May 2018.

[TS08] Babu Turumella and Mukesh Sharma. Assertion-based verification of
a 32 thread SPARC CMT microprocessor. In Proceedings of the 45th
Annual Design Automation Conference (DAC), 2008.

[VCAD15] Muralidaran Vijayaraghavan, Adam Chlipala, Arvind, and Nirav Dave.
Modular deductive verification of multiprocessor hardware designs. In
27th International Conference on Computer Aided Verification (CAV),
2015.

[Wal18] Steven Walton. AMD Ryzen Threadripper 2990wx & 2950x review,
2018. https://www.techspot.com/review/1678-amd-ryzen-threadripper-
2990wx-2950x/page2.html.

[WBBD15] John Wickerson, Mark Batty, Bradford M. Beckmann, and Alastair F.
Donaldson. Remote-scope promotion: Clarified, rectified, and verified.
SIGPLAN Not., 50(10):731–747, October 2015.

265

[WBSC17] John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantin-
ides. Automatically comparing memory consistency models. In 44th
ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL), 2017.

[Wol81] Pierre Wolper. Temporal logic can be more expressive. In Proceedings
of the 22nd Annual Symposium on Foundations of Computer Science,
SFCS ’81, page 340–348, USA, 1981. IEEE Computer Society.

[WS19] Emma Wang and Yakun Sophia Shao. Die photo analysis,
2019. http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-
analysis/.

[YL05] Ping Yeung and K. Larsen. Practical assertion-based formal verification
for SoC designs. In 2005 International Symposium on System-on-Chip,
pages 58–61, Nov 2005.

[ZBES14] Meng Zhang, J.D. Bingham, J. Erickson, and D.J. Sorin. PVCoherence:
Designing flat coherence protocols for scalable verification. In 20th
International Symposium on High Performance Computer Architecture
(HPCA), 2014.

[ZLS10] Meng Zhang, Alvin R. Lebeck, and Daniel J. Sorin. Fractal coherence:
Scalably verifiable cache coherence. In 43rd International Symposium on
Microarchitecture (MICRO), 2010.

[ZTM+18] Hongce Zhang, Caroline Trippel, Yatin A. Manerkar, Aarti Gupta, Mar-
garet Martonosi, and Sharad Malik. ILA-MCM: Integrating memory
consistency models with instruction-level abstractions for heterogeneous
system-on-chip verification. In 2018 Formal Methods in Computer Aided
Design (FMCAD), pages 1–10, 2018.

266

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 The Rise of Heterogeneous Parallelism
	1.1.1 The Quest for Improved Hardware Performance
	1.1.2 The Multicore Era and Heterogeneity

	1.2 The Need for Memory Consistency Models
	1.3 The Need for MCM Verification
	1.4 Unresolved Challenges in MCM Verification
	1.5 Dissertation Contributions
	1.6 Outline

	2 Background and Related Work
	2.1 Memory Consistency Model (MCM) Background
	2.1.1 Litmus Tests
	2.1.2 Speculative Implementations of MCMs
	2.1.3 Weak/Relaxed MCMs
	2.1.4 The Need for Formal MCM Specification and Verification

	2.2 Formal Verification Background
	2.2.1 Model Checking
	2.2.2 Interactive Proof Assistants
	2.2.3 Operational and Axiomatic Models

	2.3 MCM Specification and Verification
	2.3.1 Instruction Set (ISA) Memory Consistency Models
	2.3.2 Program Verification Under MCMs
	2.3.3 Hardware Ordering Specifications
	2.3.4 Manually Proving MCM Correctness of Hardware Implementations
	2.3.5 Dynamic MCM Verification

	2.4 Automated Formal Microarchitectural MCM Verification with PipeCheck
	2.4.1 Microarchitectural Happens-Before (hb) Graphs
	2.4.2 The spec Domain-Specific Language
	2.4.3 Automatically Verifying Correctness of a Litmus Test
	2.4.4 Moving Beyond PipeCheck

	2.5 Summary

	3 Checking Soundness and Linking to RTL Verification
	3.1 Introduction
	3.2 Motivating Example
	3.3 RTLCheck Overview
	3.4 SystemVerilog Assertions (SVA) Background
	3.4.1 Linear Temporal Logic (LTL)
	3.4.2 Regular Expressions
	3.4.3 Suffix Implication
	3.4.4 SVA Assertions and Assumptions

	3.5 Handling the SVA Verifier Assumption Over-Approximation
	3.5.1 Reasoning Behind the Over-Approximation
	3.5.2 The Assumption Over-Approximation
	3.5.3 The Over-Approximation in MCM Verification
	3.5.4 Solution: Outcome-Aware Assertion Generation

	3.6 RTLCheck Operation
	3.6.1 Assumption Generation
	3.6.2 Overall spec Axiom Translation Procedure
	3.6.3 Mapping Individual hb Edges to SVA
	3.6.4 Mapping Node Existence Checks to SVA
	3.6.5 Filtering Match Attempts

	3.7 Case Study: Multi-V-scale
	3.7.1 V-scale Microarchitecture
	3.7.2 Multi-V-scale
	3.7.3 Modelling Multi-V-scale in spec

	3.8 RTLCheck Methodology and Usage Flows
	3.8.1 RTLCheck Methodology
	3.8.2 RTLCheck Usage Flows

	3.9 Results
	3.9.1 Bug Discovered in the V-scale Processor
	3.9.2 RTLCheck Runtimes

	3.10 Related Work on Formal RTL Verification
	3.11 Chapter Summary

	4 Scalable MCM Verification Through Modularity
	4.1 Introduction
	4.2 Motivating Example
	4.2.1 Flat Verification using PipeCheck
	4.2.2 Deficiencies of Flat Verification

	4.3 RealityCheck Overview
	4.4 Abstraction and its Benefits
	4.5 spec++ Modular Design Specifications
	4.5.1 Implementation Axiom Files
	4.5.2 Module Definition Files
	4.5.3 Interface Specification and Node Mappings

	4.6 RealityCheck Operation
	4.6.1 Step 1: Microarchitecture Tree Generation
	4.6.2 Step 2: Operation Assignment
	4.6.3 Step 3: Formula Generation
	4.6.4 Steps 4 & 5: Translate to Z3 and Graph Generation

	4.7 RealityCheck Usage Flows
	4.8 Methodology and Results
	4.8.1 Methodology
	4.8.2 Verifying Litmus Tests
	4.8.3 Interface Verification
	4.8.4 Bug Finding

	4.9 Chapter Summary

	5 Automated All-Program MCM Verification
	5.1 Introduction
	5.2 PipeProof Operation
	5.2.1 PipeProof Overview
	5.2.2 Symbolic ISA-Level Executions
	5.2.3 Mapping ISA-level Executions to Microarchitecture
	5.2.4 The TC Abstraction: Representing Infinite ISA-level Chains
	5.2.5 Abstract Counterexamples
	5.2.6 Concretization and Decomposition: The Refinement Loop
	5.2.7 Termination of the PipeProof Algorithm

	5.3 Supporting Proofs and Techniques
	5.3.1 Ensuring Microarchitectural TC Abstraction Support
	5.3.2 The Need for Chain Invariants and their Proofs
	5.3.3 Theory Lemmas
	5.3.4 Over-Approximating to Ensure an Adequate Model
	5.3.5 Inductive ISA Edge Generation

	5.4 PipeProof Optimizations
	5.4.1 Covering Sets Optimization
	5.4.2 Eliminating Redundant Work Using Memoization

	5.5 Methodology, Results, and Discussion
	5.6 Related Work
	5.7 Chapter Summary

	6 Progressive Automated Formal Verification
	6.1 Testing and Verification in a Traditional Development Flow
	6.2 The Benefits of Early-Stage Design-Time Verification
	6.3 The Need for Post-Implementation Verification
	6.4 Verification at Intermediate Points in the Development Timeline
	6.5 Progressive Automated Formal Verification
	6.6 Chapter Summary

	7 Retrospective, Future Directions, and Conclusion
	7.1 Zooming Out: The Check Suite for MCM Verification
	7.2 Lessons Learned: A Retrospective
	7.2.1 Importance of Operational Model Support
	7.2.2 Benefits of a Type System for spec and spec++

	7.3 Future Work
	7.3.1 Furthering Automated All-Program MCM Verification
	7.3.2 A Unified Modelling Framework Supporting Axiomatic and Operational Models
	7.3.3 Progressive Verification of Other Domains
	7.3.4 Developing Abstractions and Concurrency Models for Emerging Hardware

	7.4 Dissertation Conclusions

	A Hardware Features and Attributes That Impact MCM Behaviour
	A.1 Non-FIFO Coalescing Store Buffers
	A.2 Out-of-order Execution
	A.3 Dependencies
	A.4 Relaxing Write Atomicity
	A.5 Cache Coherence and its Relationship to MCMs
	A.6 Cumulativity
	A.7 Virtual Memory
	A.8 Summary

	Bibliography

